Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Pimentel, Inês

  • Google
  • 1
  • 6
  • 5

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Morphological aspects and distribution of granules composed of deproteinized bovine bone or human dentin into a putty mixture5citations

Places of action

Chart of shared publication
Henriques, Bruno
1 / 64 shared
Teughels, Wim
1 / 18 shared
Özcan, Mutlu
1 / 75 shared
Matias De Souza, Júlio César
1 / 75 shared
Carvalho, Oscar
1 / 17 shared
Silva, Filipe
1 / 19 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Henriques, Bruno
  • Teughels, Wim
  • Özcan, Mutlu
  • Matias De Souza, Júlio César
  • Carvalho, Oscar
  • Silva, Filipe
OrganizationsLocationPeople

article

Morphological aspects and distribution of granules composed of deproteinized bovine bone or human dentin into a putty mixture

  • Pimentel, Inês
  • Henriques, Bruno
  • Teughels, Wim
  • Özcan, Mutlu
  • Matias De Souza, Júlio César
  • Carvalho, Oscar
  • Silva, Filipe
Abstract

<p>Objective: The main aim of this study was to evaluate the morphological aspects and distribution of granules composed of deproteinized bovine bone mineral (DBBM) and human dentin-derived bone graft (HDBG) into a putty consistency mixture. Materials and methods: DBBM or HDBG were mixed with an alginate-based hydrogel at two different granule/hydrogel ratio (1:1 and 1:3) and divided into four test groups while two control groups were composed of DBBM or HDBG free of hydrogel. Groups of specimens were cross-sectioned for morphological evaluation by scanning electron microscopy (SEM) at backscattered electrons mode. Details on the dimensions and pores’ size of DBBM and HDBG were evaluated after mixing different amounts of particles and alginate-based hydrogels. Results: Microscopic analyses revealed a size of DBBM granules ranging from 750 up to 1600 μm while HDBG particles showed particle size ranging from 375 up to 1500 μm. No statistical differences were identified regarding the size of granules (p &gt; 0.5). The mean values of pores’ size of DBBM particles were noticed at around 400 μm while HDBG particles revealed micro-scale pores of around 1–3 μm promoted by the dentin tubules (p &lt; 0.05). The lowest distance between particles was at 125 μm for HDBG and 250 μm for DBBM when the particle content was increased. On decreasing the particles’ content, the distance between particles was larger for DBBM (~ 1000 μm) and HDBG (~ 1100 μm). In fact, statistically significant differences were found when the content of granules increased (p &lt; 0.05). Conclusions: The increased content of bioactive ceramic granules in a putty consistency mixture with hydrogel decreased the space among granules that can promote a high ceramic density and stimulate the bone growth over the healing process. Macro-scale pores on bovine bone mineral granules stimulate the formation of blood vessels and cell migration while the micro-scale pores of dentin-derived granules are proper for the adsorption of proteins and growth of osteogenic cells on the bone healing process. Clinical significance: A high amount of bioactive ceramic granules should be considered when mixing with hydrogels as a putty material since that result in small spaces among granules maintaining the bone volume over the bone healing process. Deproteinized bovine bone mineral granules have macro-scale pores providing an enhanced angiogenesis while dentin-derived granules possess only micro-scale pores for the adsorption of proteins and proliferation of osteogenic cells on the bone healing process. Further studies should evaluate the combination of different bioactive ceramic materials for enhanced bone healing.</p>

Topics
  • density
  • pore
  • mineral
  • scanning electron microscopy
  • ceramic