Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ff, Chen

  • Google
  • 1
  • 8
  • 41

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2015Fourier transform infrared spectroscopy for the distinction of MCF-7 cells treated with different concentrations of 5-fluorouracil.41citations

Places of action

Chart of shared publication
Lt, Jin
1 / 1 shared
Xh, Wu
1 / 1 shared
Yy, Chen
1 / 1 shared
Bb, Wu
1 / 1 shared
Yp, Gong
1 / 1 shared
Xiong, B.
1 / 6 shared
Br, Cheng
1 / 1 shared
Hu, F.
1 / 1 shared
Chart of publication period
2015

Co-Authors (by relevance)

  • Lt, Jin
  • Xh, Wu
  • Yy, Chen
  • Bb, Wu
  • Yp, Gong
  • Xiong, B.
  • Br, Cheng
  • Hu, F.
OrganizationsLocationPeople

article

Fourier transform infrared spectroscopy for the distinction of MCF-7 cells treated with different concentrations of 5-fluorouracil.

  • Ff, Chen
  • Lt, Jin
  • Xh, Wu
  • Yy, Chen
  • Bb, Wu
  • Yp, Gong
  • Xiong, B.
  • Br, Cheng
  • Hu, F.
Abstract

<h4>Background</h4>In order to provide personalized treatment to patients with breast cancer, an accurate, reliable and cost-efficient analytical technique is needed for drug screening and evaluation of tumor response to chemotherapy.<h4>Methods</h4>Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) was used as a tool to assess cancer cell response to chemotherapy. MCF-7 cells (human breast adenocarcinoma cell line) were treated with different concentrations of 5-fluorouracil (5-FU). The inhibition of cell proliferation was monitored by MTT, and apoptosis rates were determined by flow cytometry. Finally, spectra of the cell populations were acquired by ATR-FTIR.<h4>Results</h4>The cell response to 5-FU was detectable at different concentrations by ATR-FTIR. First, a band observed at 1741 cm(-1), representing membrane phospholipids, was enhanced with increasing 5-FU concentrations. In addition, the MCF-7 cell spectrum shifted progressively from 1153 to 1170 cm(-1) with increasing drug doses. Finally, the normalized band intensity of 1741 cm(-1)/Amide I was highly correlated with the percentage of apoptotic cells as assessed by partial correlation analysis.<h4>Conclusions</h4>These findings suggest that the effects of different concentrations of drugs can be monitored by ATR-FTIR, which may help evaluate the response to chemotherapy and improve treatment strategies.

Topics
  • impedance spectroscopy
  • Fourier transform infrared spectroscopy