Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kikuchi, Y.

  • Google
  • 2
  • 21
  • 29

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2022Efficient secretory production of proline/alanine/serine (PAS) biopolymers in Corynebacterium glutamicum yielding a monodisperse biological alternative to polyethylene glycol (PEG)3citations
  • 2020Marked Impairment of Endothelium-Dependent Digital Vasodilatations in Patients with Microvascular Angina: Evidence for Systemic Small Artery Disease26citations

Places of action

Chart of shared publication
Binder, U.
1 / 1 shared
Skerra, A.
1 / 1 shared
Friedrich, L.
1 / 4 shared
Matsuda, Y.
1 / 6 shared
Tsuchiya, S.
1 / 2 shared
Sugisawa, J.
1 / 1 shared
Godo, S.
1 / 1 shared
Shiroto, T.
1 / 1 shared
Takahashi, J.
1 / 3 shared
Ikumi, Y.
1 / 1 shared
Ohura-Kajitani, S.
1 / 1 shared
Shindo, T.
1 / 1 shared
Matsumoto, Y.
1 / 7 shared
Ikeda, S.
1 / 2 shared
Sato, K.
1 / 20 shared
Ito, A.
1 / 13 shared
Miyata, S.
1 / 1 shared
Hao, K.
1 / 1 shared
Suda, A.
1 / 1 shared
Nochioka, K.
1 / 1 shared
Tanaka, S.
1 / 9 shared
Chart of publication period
2022
2020

Co-Authors (by relevance)

  • Binder, U.
  • Skerra, A.
  • Friedrich, L.
  • Matsuda, Y.
  • Tsuchiya, S.
  • Sugisawa, J.
  • Godo, S.
  • Shiroto, T.
  • Takahashi, J.
  • Ikumi, Y.
  • Ohura-Kajitani, S.
  • Shindo, T.
  • Matsumoto, Y.
  • Ikeda, S.
  • Sato, K.
  • Ito, A.
  • Miyata, S.
  • Hao, K.
  • Suda, A.
  • Nochioka, K.
  • Tanaka, S.
OrganizationsLocationPeople

article

Efficient secretory production of proline/alanine/serine (PAS) biopolymers in Corynebacterium glutamicum yielding a monodisperse biological alternative to polyethylene glycol (PEG)

  • Binder, U.
  • Skerra, A.
  • Friedrich, L.
  • Kikuchi, Y.
  • Matsuda, Y.
Abstract

<jats:title>Abstract</jats:title><jats:sec><jats:title>Background</jats:title><jats:p>PAS biopolymers are recombinant polypeptides comprising the small uncharged <jats:sc>l</jats:sc>-amino acids Pro, Ala and/or Ser which resemble the widely used poly-ethylene glycol (PEG) in terms of pronounced hydrophilicity. Likewise, their random chain behaviour in physiological solution results in a strongly expanded hydrodynamic volume. Thus, apart from their use as fusion partner for biopharmaceuticals to achieve prolonged half-life in vivo, PAS biopolymers appear attractive as substitute for PEG—or other poorly degradable chemical polymers—in many areas. As a prerequisite for the wide application of PAS biopolymers at affordable cost, we have established their highly efficient biotechnological production in <jats:italic>Corynebacterium glutamicum</jats:italic> serving as a well characterized bacterial host organism.</jats:p></jats:sec><jats:sec><jats:title>Results</jats:title><jats:p>Using the CspA signal sequence, we have secreted two representative PAS biopolymers as polypeptides with ~ 600 and ~ 1200 amino acid residues, respectively. Both PAS biopolymers were purified from the culture supernatant by means of a simple downstream process in a truly monodisperse state as evidenced by ESI–MS. Yields after purification were up to ≥ 4 g per liter culture, with potential for further increase by strain optimization as well as fermentation and bioprocess development. Beyond direct application as hydrocolloids or to exploit their rheological properties, such PAS biopolymers are suitable for site-specific chemical conjugation with pharmacologically active molecules via their unique terminal amino or carboxyl groups. To enable the specific activation of the carboxylate, without interference by the free amino group, we generated a blocked N-terminus for the PAS(1200) polypeptide simply by introducing an N-terminal Gln residue which, after processing of the signal peptide, was cyclised to a chemically inert pyroglutamyl group upon acid treatment. The fact that PAS biopolymers are genetically encoded offers further conjugation strategies via incorporation of amino acids with reactive side chains (e.g., Cys, Lys, Glu/Asp) at defined positions.</jats:p></jats:sec><jats:sec><jats:title>Conclusions</jats:title><jats:p>Our new PAS expression platform using Corynex<jats:sup>®</jats:sup> technology opens the way to applications of PASylation<jats:sup>®</jats:sup> technology in multiple areas such as the pharmaceutical industry, cosmetics and food technology.</jats:p></jats:sec>

Topics
  • polymer
  • reactive
  • mass spectrometry
  • positron annihilation lifetime spectroscopy
  • Photoacoustic spectroscopy
  • activation
  • random
  • size-exclusion chromatography
  • electrospray ionisation
  • fermentation