Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Hick, Louise

  • Google
  • 1
  • 5
  • 1

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022An exploratory assessment of the impact of a novel risk assessment test on breast cancer clinic waiting times and workflow: a discrete event simulation model1citations

Places of action

Chart of shared publication
Sharma, Nisha
1 / 4 shared
Neal, Richard D.
1 / 1 shared
Frempong, Samuel N.
1 / 1 shared
Shinkins, Bethany
1 / 3 shared
Smith, Alison F.
1 / 1 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Sharma, Nisha
  • Neal, Richard D.
  • Frempong, Samuel N.
  • Shinkins, Bethany
  • Smith, Alison F.
OrganizationsLocationPeople

article

An exploratory assessment of the impact of a novel risk assessment test on breast cancer clinic waiting times and workflow: a discrete event simulation model

  • Sharma, Nisha
  • Neal, Richard D.
  • Hick, Louise
  • Frempong, Samuel N.
  • Shinkins, Bethany
  • Smith, Alison F.
Abstract

<jats:title>Abstract</jats:title><jats:sec><jats:title>Background</jats:title><jats:p>Breast cancer clinics across the UK have long been struggling to cope with high demand. Novel risk prediction tools – such as the PinPoint test – could help to reduce unnecessary clinic referrals. Using early data on the expected accuracy of the test, we explore the potential impact of PinPoint on: (a) the percentage of patients meeting the two-week referral target, and (b) the number of clinic ‘overspill’ appointments generated (i.e. patients having to return to the clinic to complete their required investigations).</jats:p></jats:sec><jats:sec><jats:title>Methods</jats:title><jats:p>A simulation model was built to reflect the annual flow of patients through a single UK clinic. Due to current uncertainty around the exact impact of PinPoint testing on standard care, two primary scenarios were assessed. Scenario 1 assumed complete GP adherence to testing, with only non-referred cancerous cases returning for delayed referral. Scenario 2 assumed GPs would overrule 20% of low-risk results, and that 10% of non-referred non-cancerous cases would also return for delayed referral. A range of sensitivity analyses were conducted to explore the impact of key uncertainties on the model results. Service reconfiguration scenarios, removing individual weekly clinics from the clinic schedule, were also explored.</jats:p></jats:sec><jats:sec><jats:title>Results</jats:title><jats:p>Under standard care, 66.3% (95% CI: 66.0 to 66.5) of patients met the referral target, with 1,685 (1,648 to 1,722) overspill appointments. Under both PinPoint scenarios, &gt; 98% of patients met the referral target, with overspill appointments reduced to between 727 (707 to 746) [Scenario 1] and 886 (861 to 911) [Scenario 2]. The reduced clinic demand was sufficient to allow removal of one weekly low-capacity clinic [N = 10], and the results were robust to sensitivity analyses.</jats:p></jats:sec><jats:sec><jats:title>Conclusion</jats:title><jats:p>The findings from this early analysis indicate that risk prediction tools could have the potential to alleviate pressure on cancer clinics, and are expected to have increased utility in the wake of heightened pressures resulting from the COVID-19 pandemic. Further research is required to validate these findings with real world evidence; evaluate the broader clinical and economic impact of the test; and to determine outcomes and risks for patients deemed to be low-risk on the PinPoint test and therefore not initially referred.</jats:p></jats:sec>

Topics
  • impedance spectroscopy
  • simulation
  • size-exclusion chromatography
  • chemical ionisation