Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Siebeck, Matthias

  • Google
  • 1
  • 4
  • 9

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2021Learning to diagnose accurately through virtual patients: do reflection phases have an added benefit?9citations

Places of action

Chart of shared publication
Heitzmann, Nicole
1 / 1 shared
Fink, Maximilian C.
1 / 1 shared
Fischer, Frank
1 / 8 shared
Fischer, Martin R.
1 / 2 shared
Chart of publication period
2021

Co-Authors (by relevance)

  • Heitzmann, Nicole
  • Fink, Maximilian C.
  • Fischer, Frank
  • Fischer, Martin R.
OrganizationsLocationPeople

article

Learning to diagnose accurately through virtual patients: do reflection phases have an added benefit?

  • Heitzmann, Nicole
  • Fink, Maximilian C.
  • Siebeck, Matthias
  • Fischer, Frank
  • Fischer, Martin R.
Abstract

<jats:title>Abstract</jats:title><jats:sec><jats:title>Background</jats:title><jats:p>Simulation-based learning with virtual patients is a highly effective method that could potentially be further enhanced by including reflection phases. The effectiveness of reflection phases for learning to diagnose has mainly been demonstrated for problem-centered instruction with text-based cases, not for simulation-based learning. To close this research gap, we conducted a study on learning history-taking using virtual patients. In this study, we examined the added benefit of including reflection phases on learning to diagnose accurately, the associations between knowledge and learning, and the diagnostic process.</jats:p></jats:sec><jats:sec><jats:title>Methods</jats:title><jats:p>A sample of <jats:italic>N</jats:italic> = 121 medical students completed a three-group experiment with a control group and pre- and posttests. The pretest consisted of a conceptual and strategic knowledge test and virtual patients to be diagnosed. In the learning phase, two intervention groups worked with virtual patients and completed different types of reflection phases, while the control group learned with virtual patients but without reflection phases. The posttest again involved virtual patients. For all virtual patients, diagnostic accuracy was assessed as the primary outcome. Current hypotheses were tracked during reflection phases and in simulation-based learning to measure diagnostic process.</jats:p></jats:sec><jats:sec><jats:title>Results</jats:title><jats:p>Regarding the added benefit of reflection phases, an ANCOVA controlling for pretest performance found no difference in diagnostic accuracy at posttest between the three conditions, <jats:italic>F</jats:italic>(2, 114) = 0.93, <jats:italic>p</jats:italic> = .398. Concerning knowledge and learning, both pretest conceptual knowledge and strategic knowledge were not associated with learning to diagnose accurately through reflection phases. Learners’ diagnostic process improved during simulation-based learning and the reflection phases.</jats:p></jats:sec><jats:sec><jats:title>Conclusions</jats:title><jats:p>Reflection phases did not have an added benefit for learning to diagnose accurately in virtual patients. This finding indicates that reflection phases may not be as effective in simulation-based learning as in problem-centered instruction with text-based cases and can be explained with two contextual differences. First, information processing in simulation-based learning uses the verbal channel and the visual channel, while text-based learning only draws on the verbal channel. Second, in simulation-based learning, serial cue cases are used to gather information step-wise, whereas, in text-based learning, whole cases are used that present all data at once.</jats:p></jats:sec>

Topics
  • impedance spectroscopy
  • phase
  • experiment
  • simulation
  • size-exclusion chromatography