Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Jacobs, Reinhilde

  • Google
  • 2
  • 10
  • 194

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2023Trueness of cone-beam computed tomography-derived skull models fabricated by different technology-based three-dimensional printers2citations
  • 2013Quantification of metal artifacts on cone beam computed tomography images192citations

Places of action

Chart of shared publication
Ferraris, Eleonora
1 / 17 shared
Shujaat, Sohaib
1 / 1 shared
Wang, Xiaotong
1 / 1 shared
Shaheen, Eman
1 / 1 shared
Bogaerts, Ria
1 / 1 shared
Stamatakis, Harry
1 / 1 shared
Bosmans, Hilde
1 / 3 shared
Horner, Keith
1 / 2 shared
Tsiklakis, Kostas
1 / 1 shared
Pauwels, Ruben
1 / 1 shared
Chart of publication period
2023
2013

Co-Authors (by relevance)

  • Ferraris, Eleonora
  • Shujaat, Sohaib
  • Wang, Xiaotong
  • Shaheen, Eman
  • Bogaerts, Ria
  • Stamatakis, Harry
  • Bosmans, Hilde
  • Horner, Keith
  • Tsiklakis, Kostas
  • Pauwels, Ruben
OrganizationsLocationPeople

article

Trueness of cone-beam computed tomography-derived skull models fabricated by different technology-based three-dimensional printers

  • Ferraris, Eleonora
  • Shujaat, Sohaib
  • Wang, Xiaotong
  • Shaheen, Eman
  • Jacobs, Reinhilde
Abstract

<jats:title>Abstract</jats:title><jats:sec><jats:title>Background</jats:title><jats:p>Three-dimensional (3D) printing is a novel innovation in the field of craniomaxillofacial surgery, however, a lack of evidence exists related to the comparison of the trueness of skull models fabricated using different technology-based printers belonging to different cost segments. </jats:p></jats:sec><jats:sec><jats:title>Methods</jats:title><jats:p>A study was performed to investigate the trueness of cone-beam computed tomography-derived skull models fabricated using different technology based on low-, medium-, and high-cost 3D printers. Following the segmentation of a patient’s skull, the model was printed by: (i) a low-cost fused filament fabrication printer; (ii) a medium-cost stereolithography printer; and (iii) a high-cost material jetting printer. The fabricated models were later scanned by industrial computed tomography and superimposed onto the original reference virtual model by applying surface-based registration. A part comparison color-coded analysis was conducted for assessing the difference between the reference and scanned models. A one-way analysis of variance (ANOVA) with Bonferroni correction was applied for statistical analysis.</jats:p></jats:sec><jats:sec><jats:title>Results</jats:title><jats:p>The model printed with the low-cost fused filament fabrication printer showed the highest mean absolute error (<jats:inline-formula><jats:alternatives><jats:tex-math>1.33 0.24 {mm}</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mn>1.33</mml:mn><mml:mo>±</mml:mo><mml:mn>0.24</mml:mn><mml:mtext>mm</mml:mtext></mml:mrow></mml:math></jats:alternatives></jats:inline-formula>), whereas both medium-cost stereolithography-based and the high-cost material jetting models had an overall similar dimensional error of <jats:inline-formula><jats:alternatives><jats:tex-math>0.07 0.03 {mm}</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mn>0.07</mml:mn><mml:mo>±</mml:mo><mml:mn>0.03</mml:mn><mml:mtext>mm</mml:mtext></mml:mrow></mml:math></jats:alternatives></jats:inline-formula> and <jats:inline-formula><jats:alternatives><jats:tex-math>0.07 0.01 {mm}</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mn>0.07</mml:mn><mml:mo>±</mml:mo><mml:mn>0.01</mml:mn><mml:mtext>mm</mml:mtext></mml:mrow></mml:math></jats:alternatives></jats:inline-formula>, respectively. Overall, the models printed with medium- and high-cost printers showed a significantly (<jats:inline-formula><jats:alternatives><jats:tex-math>p&lt;0.01</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>p</mml:mi><mml:mo>&lt;</mml:mo><mml:mn>0.01</mml:mn></mml:mrow></mml:math></jats:alternatives></jats:inline-formula>) lower error compared to the low-cost printer.</jats:p></jats:sec><jats:sec><jats:title>Conclusions</jats:title><jats:p>Both stereolithography and material jetting based printers, belonging to the medium- and high-cost market segment, were able to replicate the skeletal anatomy with optimal trueness, which might be suitable for patient-specific treatment planning tasks in craniomaxillofacial surgery. In contrast, the low-cost fused filament fabrication printer could serve as a cost-effective alternative for anatomical education, and/or patient communication.</jats:p></jats:sec>

Topics
  • impedance spectroscopy
  • surface
  • tomography
  • size-exclusion chromatography
  • material jetting