Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Mellors, Ben O. L.

  • Google
  • 1
  • 9
  • 26

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2019Dynamic viscoelastic characterisation of human osteochondral tissue26citations

Places of action

Chart of shared publication
Cooke, Megan E.
1 / 2 shared
Lavecchia, Carolina E.
1 / 1 shared
Fell, Natasha L. A.
1 / 1 shared
Espino, Daniel M.
1 / 5 shared
Mountcastle, Sophie E.
1 / 1 shared
Jones, Simon
1 / 5 shared
Allen, Piers
1 / 3 shared
Lawless, Bernard M.
1 / 1 shared
Cox, Sophie C.
1 / 18 shared
Chart of publication period
2019

Co-Authors (by relevance)

  • Cooke, Megan E.
  • Lavecchia, Carolina E.
  • Fell, Natasha L. A.
  • Espino, Daniel M.
  • Mountcastle, Sophie E.
  • Jones, Simon
  • Allen, Piers
  • Lawless, Bernard M.
  • Cox, Sophie C.
OrganizationsLocationPeople

article

Dynamic viscoelastic characterisation of human osteochondral tissue

  • Cooke, Megan E.
  • Lavecchia, Carolina E.
  • Fell, Natasha L. A.
  • Espino, Daniel M.
  • Mountcastle, Sophie E.
  • Jones, Simon
  • Allen, Piers
  • Mellors, Ben O. L.
  • Lawless, Bernard M.
  • Cox, Sophie C.
Abstract

<p>Background: Despite it being known that subchondral bone affects the viscoelasticity of cartilage, there has been little research into the mechanical properties of osteochondral tissue as a whole system. This study aims to unearth new knowledge concerning the dynamic behaviour of human subchondral bone and how energy is transferred through the cartilage-bone interface. </p><p>Methods: Dynamic mechanical analysis was used to determine the frequency-dependent (1-90 Hz) viscoelastic properties of the osteochondral unit (cartilage-bone system) as well as isolated cartilage and bone specimens extracted from human femoral heads obtained from patients undergoing total hip replacement surgery, with a mean age of 78 years (N = 5, n = 22). Bone mineral density (BMD) was also determined for samples using micro-computed tomography as a marker of tissue health. </p><p>Results: Cartilage storage and loss moduli along with bone storage modulus were found to increase logarithmically (p &lt; 0.05) with frequency. The mean cartilage storage modulus was 34.4 ± 3.35 MPa and loss modulus was 6.17 ± 0.48 MPa (mean ± standard deviation). In contrast, bone loss modulus decreased logarithmically between 1 and 90 Hz (p &lt; 0.05). The storage stiffness of the cartilage-bone-core was found to be frequency-dependent with a mean value of 1016 ± 54.0 N.mm<sup>- 1</sup>, while the loss stiffness was determined to be frequency-independent at 78.84 ± 2.48 N.mm<sup>- 1</sup>. Notably, a statistically significant (p &lt; 0.05) linear correlation was found between the total energy dissipated from the isolated cartilage specimens, and the BMD of the isolated bone specimens at all frequencies except at 90 Hz (p = 0.09). </p><p>Conclusions: The viscoelastic properties of the cartilage-bone core were significantly different to the tissues in isolation (p &lt; 0.05). Results from this study demonstrate that the functionality of these tissues arises because they operate as a unit. This is evidenced through the link between cartilage energy dissipated and bone BMD. The results may provide insights into the functionality of the osteochondral unit, which may offer further understanding of disease progression, such as osteoarthritis (OA). Furthermore, the results emphasise the importance of studying human tissue, as bovine models do not always display the same trends.</p>

Topics
  • density
  • impedance spectroscopy
  • mineral
  • tomography
  • viscoelasticity
  • hot isostatic pressing
  • dynamic mechanical analysis