Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Heath, Bethany

  • Google
  • 1
  • 5
  • 3

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Evaluating pooled testing for asymptomatic screening of healthcare workers in hospitals3citations

Places of action

Chart of shared publication
Evans, Stephanie
1 / 2 shared
Robertson, David S.
1 / 1 shared
Presanis, Anne M.
1 / 2 shared
Robotham, Julie V.
1 / 1 shared
Villar, Sofía S.
1 / 1 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Evans, Stephanie
  • Robertson, David S.
  • Presanis, Anne M.
  • Robotham, Julie V.
  • Villar, Sofía S.
OrganizationsLocationPeople

article

Evaluating pooled testing for asymptomatic screening of healthcare workers in hospitals

  • Evans, Stephanie
  • Robertson, David S.
  • Heath, Bethany
  • Presanis, Anne M.
  • Robotham, Julie V.
  • Villar, Sofía S.
Abstract

<jats:title>Abstract</jats:title><jats:sec><jats:title>Background</jats:title><jats:p>There is evidence that during the COVID pandemic, a number of patient and HCW infections were nosocomial. Various measures were put in place to try to reduce these infections including developing asymptomatic PCR (polymerase chain reaction) testing schemes for healthcare workers. Regularly testing all healthcare workers requires many tests while reducing this number by only testing some healthcare workers can result in undetected cases. An efficient way to test as many individuals as possible with a limited testing capacity is to consider pooling multiple samples to be analysed with a single test (known as pooled testing).</jats:p></jats:sec><jats:sec><jats:title>Methods</jats:title><jats:p>Two different pooled testing schemes for the asymptomatic testing are evaluated using an individual-based model representing the transmission of SARS-CoV-2 in a ‘typical’ English hospital. We adapt the modelling to reflect two scenarios: a) a retrospective look at earlier SARS-CoV-2 variants under lockdown or social restrictions, and b) transitioning back to ‘normal life’ without lockdown and with the omicron variant. The two pooled testing schemes analysed differ in the population that is eligible for testing. In the ‘ward’ testing scheme only healthcare workers who work on a single ward are eligible and in the ‘full’ testing scheme all healthcare workers are eligible including those that move across wards. Both pooled schemes are compared against the baseline scheme which tests only symptomatic healthcare workers.</jats:p></jats:sec><jats:sec><jats:title>Results</jats:title><jats:p>Including a pooled asymptomatic testing scheme is found to have a modest (albeit statistically significant) effect, reducing the total number of nosocomial healthcare worker infections by about 2<jats:inline-formula><jats:alternatives><jats:tex-math>\%</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mo>%</mml:mo></mml:math></jats:alternatives></jats:inline-formula> in both the lockdown and non-lockdown setting. However, this reduction must be balanced with the increase in cost and healthcare worker isolations. Both ward and full testing reduce HCW infections similarly but the cost for ward testing is much less. We also consider the use of lateral flow devices (LFDs) for follow-up testing. Considering LFDs reduces cost and time but LFDs have a different error profile to PCR tests.</jats:p></jats:sec><jats:sec><jats:title>Conclusions</jats:title><jats:p>Whether a <jats:italic>PCR-only</jats:italic> or <jats:italic>PCR and LFD ward</jats:italic> testing scheme is chosen depends on the metrics of most interest to policy makers, the virus prevalence and whether there is a lockdown.</jats:p></jats:sec>

Topics
  • impedance spectroscopy
  • laser emission spectroscopy
  • size-exclusion chromatography