Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Lisón, P.

  • Google
  • 1
  • 8
  • 7

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022SlS5H silencing reveals specific pathogen-triggered salicylic acid metabolism in tomato7citations

Places of action

Chart of shared publication
Miguel, S. M.
1 / 1 shared
Campos, L.
1 / 2 shared
Hernández, M.
1 / 5 shared
Payá, C.
1 / 1 shared
López-Gresa, M. P.
1 / 1 shared
Bellés, J. M.
1 / 1 shared
Minguillón, S.
1 / 1 shared
Rodrigo, I.
1 / 1 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Miguel, S. M.
  • Campos, L.
  • Hernández, M.
  • Payá, C.
  • López-Gresa, M. P.
  • Bellés, J. M.
  • Minguillón, S.
  • Rodrigo, I.
OrganizationsLocationPeople

article

SlS5H silencing reveals specific pathogen-triggered salicylic acid metabolism in tomato

  • Miguel, S. M.
  • Campos, L.
  • Hernández, M.
  • Payá, C.
  • López-Gresa, M. P.
  • Bellés, J. M.
  • Minguillón, S.
  • Rodrigo, I.
  • Lisón, P.
Abstract

<jats:title>Abstract</jats:title><jats:sec><jats:title>Background</jats:title><jats:p>Salicylic acid (SA) is a major plant hormone that mediates the defence pathway against pathogens. SA accumulates in highly variable amounts depending on the plant-pathogen system, and several enzyme activities participate in the restoration of its levels. Gentisic acid (GA) is the product of the 5-hydroxylation of SA, which is catalysed by S5H, an enzyme activity regarded as a major player in SA homeostasis. GA accumulates at high levels in tomato plants infected by Citrus Exocortis Viroid (CEVd), and to a lesser extend upon <jats:italic>Pseudomonas syringae</jats:italic> DC3000 pv. <jats:italic>tomato</jats:italic> (<jats:italic>Pst</jats:italic>) infection.</jats:p></jats:sec><jats:sec><jats:title>Results</jats:title><jats:p>We have studied the induction of tomato <jats:italic>SlS5H</jats:italic> gene by different pathogens, and its expression correlates with the accumulation of GA. Transient over-expression of <jats:italic>SlS5H</jats:italic> in <jats:italic>Nicotiana benthamiana</jats:italic> confirmed that SA is processed by SlS5H in vivo. <jats:italic>SlS5H</jats:italic>-silenced tomato plants were generated, displaying a smaller size and early senescence, together with hypersusceptibility to the necrotrophic fungus <jats:italic>Botrytis cinerea</jats:italic>. In contrast, these transgenic lines exhibited an increased defence response and resistance to both CEVd and <jats:italic>Pst</jats:italic> infections. Alternative SA processing appears to occur for each specific pathogenic interaction to cope with SA levels. In <jats:italic>SlS5H</jats:italic>-silenced plants infected with CEVd, glycosylated SA was the most discriminant metabolite found. Instead, in <jats:italic>Pst</jats:italic>-infected transgenic plants, SA appeared to be rerouted to other phenolics such as feruloyldopamine, feruloylquinic acid, feruloylgalactarate and 2-hydroxyglutarate.</jats:p></jats:sec><jats:sec><jats:title>Conclusion</jats:title><jats:p>Using <jats:italic>SlS5H</jats:italic>-silenced plants as a tool to unbalance SA levels, we have studied the re-routing of SA upon CEVd and <jats:italic>Pst</jats:italic> infections and found that, despite the common origin and role for SA in plant pathogenesis, there appear to be different pathogen-specific, alternate homeostasis pathways.</jats:p></jats:sec>

Topics
  • impedance spectroscopy
  • size-exclusion chromatography