Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Dinh, Thuy Trang

  • Google
  • 1
  • 5
  • 5

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022Extract antibody and antigen names from biomedical literature5citations

Places of action

Chart of shared publication
Nguyen, Chau
1 / 4 shared
Vo, Nam
1 / 1 shared
Huynh, Viet Quoc
1 / 1 shared
Vo-Chanh, Trang Phuong
1 / 1 shared
Nguyen, Hoang
1 / 12 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Nguyen, Chau
  • Vo, Nam
  • Huynh, Viet Quoc
  • Vo-Chanh, Trang Phuong
  • Nguyen, Hoang
OrganizationsLocationPeople

article

Extract antibody and antigen names from biomedical literature

  • Nguyen, Chau
  • Vo, Nam
  • Huynh, Viet Quoc
  • Dinh, Thuy Trang
  • Vo-Chanh, Trang Phuong
  • Nguyen, Hoang
Abstract

<jats:title>Abstract</jats:title><jats:sec><jats:title>Background</jats:title><jats:p>The roles of antibody and antigen are indispensable in targeted diagnosis, therapy, and biomedical discovery. On top of that, massive numbers of new scientific articles about antibodies and/or antigens are published each year, which is a precious knowledge resource but has yet been exploited to its full potential. We, therefore, aim to develop a biomedical natural language processing tool that can automatically identify antibody and antigen entities from articles.</jats:p></jats:sec><jats:sec><jats:title>Results</jats:title><jats:p>We first annotated an antibody-antigen corpus including 3210 relevant PubMed abstracts using a semi-automatic approach. The Inter-Annotator Agreement score of 3 annotators ranges from 91.46 to 94.31%, indicating that the annotations are consistent and the corpus is reliable. We then used the corpus to develop and optimize BiLSTM-CRF-based and BioBERT-based models. The models achieved overall F1 scores of 62.49% and 81.44%, respectively, which showed potential for newly studied entities. The two models served as foundation for development of a named entity recognition (NER) tool that automatically recognizes antibody and antigen names from biomedical literature.</jats:p></jats:sec><jats:sec><jats:title>Conclusions</jats:title><jats:p>Our antibody-antigen NER models enable users to automatically extract antibody and antigen names from scientific articles without manually scanning through vast amounts of data and information in the literature. The output of NER can be used to automatically populate antibody-antigen databases, support antibody validation, and facilitate researchers with the most appropriate antibodies of interest. The packaged NER model is available at <jats:ext-link xmlns:xlink="http://www.w3.org/1999/xlink" ext-link-type="uri" xlink:href="https://github.com/TrangDinh44/ABAG_BioBERT.git">https://github.com/TrangDinh44/ABAG_BioBERT.git</jats:ext-link>.</jats:p></jats:sec>

Topics
  • impedance spectroscopy
  • size-exclusion chromatography