Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Nowicka, Anna M.

  • Google
  • 1
  • 6
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024Studies on the thermal sensitivity of lung cancer cells exposed to an alternating magnetic field and magnesium-doped maghemite nanoparticlescitations

Places of action

Chart of shared publication
Domanski, Grzegorz
1 / 1 shared
Sikorska, Malgorzata
1 / 1 shared
Kasprzak, Artur
1 / 2 shared
Bamburowicz-Klimkowska, Magdalena
1 / 1 shared
Ruzycka-Ayoush, Monika
1 / 1 shared
Grudzinski, Ireneusz P.
1 / 1 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Domanski, Grzegorz
  • Sikorska, Malgorzata
  • Kasprzak, Artur
  • Bamburowicz-Klimkowska, Magdalena
  • Ruzycka-Ayoush, Monika
  • Grudzinski, Ireneusz P.
OrganizationsLocationPeople

article

Studies on the thermal sensitivity of lung cancer cells exposed to an alternating magnetic field and magnesium-doped maghemite nanoparticles

  • Domanski, Grzegorz
  • Sikorska, Malgorzata
  • Kasprzak, Artur
  • Bamburowicz-Klimkowska, Magdalena
  • Ruzycka-Ayoush, Monika
  • Nowicka, Anna M.
  • Grudzinski, Ireneusz P.
Abstract

<jats:title>Abstract</jats:title><jats:sec><jats:title>Background</jats:title><jats:p>Magnetic fluid hyperthermia (MFH) represents a promising therapeutic strategy in cancer utilizing the heating capabilities of magnetic nanoparticles when exposed to an alternating magnetic field (AMF). Because the efficacy and safety of MFH treatments depends on numerous intrinsic and extrinsic factors, therefore, the proper MFH setups should focus on thermal energy dosed into the cancer cells.</jats:p></jats:sec><jats:sec><jats:title>Methods</jats:title><jats:p>In this study, we performed MFH experiments using human lung cancer A549 cells (in vitro) and NUDE Balb/c mice bearing human lung (A549) cancer (in vivo). In these two experimental models, the heat was induced by magnesium-doped iron(III) oxide nanoparticles coated with mPEG-silane (Mg<jats:sub>0.1</jats:sub>-γ-Fe<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub>(mPEG-silane)<jats:sub>0.5</jats:sub>) when exposed to an AMF.</jats:p></jats:sec><jats:sec><jats:title>Results</jats:title><jats:p>We observed that the lung cancer cells treated with Mg<jats:sub>0.1</jats:sub>-γ-Fe<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub>(mPEG-silane)<jats:sub>0.5</jats:sub> (0.25 mg·mL<jats:sup>−1</jats:sup>) and magnetized for 30 min at 14.4 kA·m<jats:sup>−1</jats:sup> yielded a satisfactory outcome in reducing the cell viability up to ca. 21% (in vitro). The activation energy calculated for this field strength was estimated for 349 kJ·mol<jats:sup>−1</jats:sup>. Both volumetric measurements and tumor mass assessments confirmed by magnetic resonance imaging (MRI) showed a superior thermal effect in mice bearing human lung cancer injected intratumorally with Mg<jats:sub>0.1</jats:sub>-γ-Fe<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub>(mPEG-silane)<jats:sub>0.5</jats:sub> nanoparticles (3 mg·mL<jats:sup>−1</jats:sup>) and subjected to an AMF (18.3 kA·m<jats:sup>−1</jats:sup>) for 30 min four times at weekly intervals. Research demonstrated that mice undergoing MFH exhibited a marked suppression of tumor growth (V = 169 ± 94 mm<jats:sup>3</jats:sup>; <jats:italic>p</jats:italic> &lt; 0.05) in comparison to the control group of untreated mice. The CEM43 (cumulative number of equivalent minutes at 43 °C) value for these treatments were estimated for ca. 9.6 min with the specific absorption rate (SAR) level ranging from 100 to 150 W·g<jats:sup>−1</jats:sup>.</jats:p></jats:sec><jats:sec><jats:title>Conclusions</jats:title><jats:p>The as-obtained results, both cytotoxic and those related to energy calculations and SAR, may contribute to the advancement of thermal therapies, concurrently indicating that the proposed magnetic fluid hyperthermia holds a great potential for further testing in the context of medical applications.</jats:p></jats:sec><jats:sec><jats:title>Graphical Abstract</jats:title></jats:sec>

Topics
  • nanoparticle
  • experiment
  • Magnesium
  • Magnesium
  • strength
  • iron
  • activation
  • size-exclusion chromatography