Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Bravo, Iván

  • Google
  • 1
  • 9
  • 6

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Anti-EGFR conjugated nanoparticles to deliver Alpelisib as targeted therapy for head and neck cancer6citations

Places of action

Chart of shared publication
Juan, Alberto
1 / 1 shared
Segrelles, Carmen
1 / 1 shared
Campo-Balguerías, Almudena Del
1 / 1 shared
Silva, Ignacio
1 / 1 shared
Peral, Jorge
1 / 1 shared
Ocaña, Alberto
1 / 2 shared
Clemente-Casares, Pilar
1 / 2 shared
Lorz, Corina
1 / 1 shared
Alonso-Moreno, Carlos
1 / 5 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Juan, Alberto
  • Segrelles, Carmen
  • Campo-Balguerías, Almudena Del
  • Silva, Ignacio
  • Peral, Jorge
  • Ocaña, Alberto
  • Clemente-Casares, Pilar
  • Lorz, Corina
  • Alonso-Moreno, Carlos
OrganizationsLocationPeople

article

Anti-EGFR conjugated nanoparticles to deliver Alpelisib as targeted therapy for head and neck cancer

  • Juan, Alberto
  • Segrelles, Carmen
  • Campo-Balguerías, Almudena Del
  • Bravo, Iván
  • Silva, Ignacio
  • Peral, Jorge
  • Ocaña, Alberto
  • Clemente-Casares, Pilar
  • Lorz, Corina
  • Alonso-Moreno, Carlos
Abstract

<jats:title>Abstract</jats:title><jats:sec><jats:title>Background</jats:title><jats:p>Head and neck squamous cell carcinoma (SCC) is one of the most prevalent and deadly cancers worldwide. Even though surgical approaches, radiation therapy, and therapeutic agents are commonly used, the prognosis of this cancer remains poor, with a tendency towards recurrence and metastasis. Current targeted therapeutic options for these patients are limited to monoclonal antibodies against EGFR or PD-1 receptors. Thus, there is an urgent need to introduce new molecularly targeted therapies for treating head and neck SCC. EGFR can be used as a target to improve the ability of nanoparticles to bind to tumor cells and deliver chemotherapeutic agents. In fact, over 90% of head and neck SCCs overexpress EGFR, and other tumor types, such as colorectal and glioblastoma, show EGFR overexpression. The PI3K/mTOR signaling pathway is one of the most commonly altered oncogenic pathways in head and neck SCC. Alpelisib is a specific PI3Kα inhibitor indicated for PIK3CA mutant advanced breast cancer that showed promising activity in clinical trials in head and neck SCC. However, its use is associated with dose-limiting toxicities and treatment-related adverse effects.</jats:p></jats:sec><jats:sec><jats:title>Results</jats:title><jats:p>We generated polylactide (PLA) polymeric nanoparticles conjugated to anti-EGFR antibodies via chemical cross-linking to a polyethyleneimine (PEI) coating. Antibody-conjugated nanoparticles (ACNP) displayed low polydispersity and high stability. In vivo, ACNP showed increased tropism for EGFR-expressing head and neck tumors in a xenograft model compared to non-conjugated nanoparticles (NP). Alpelisib-loaded nanoparticles were homogeneous, stable, and showed a sustained drug release profile. Encapsulated Alpelisib inhibited PI3K pathway activation in the different cell lines tested that included wild type and altered PIK3CA. Alpelisib-NP and Alpelisib-ACNP decreased by 25 times the half-maximal inhibitory concentration compared to the free drug and increased the bioavailability of the drug in the cells. Herein we propose an efficient strategy to treat head and neck SCC based on nanotechnology.</jats:p></jats:sec><jats:sec><jats:title>Conclusions</jats:title><jats:p>Anti-EGFR-conjugated polymeric nanoparticles are an effective delivery system to increase drug efficiency and bioavailability in head and neck cancer cells. This strategy can help reduce drug exposure in disease-free organs and decrease drug-associated unwanted side effects.</jats:p></jats:sec>

Topics
  • nanoparticle
  • impedance spectroscopy
  • activation
  • size-exclusion chromatography
  • polydispersity