Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Cordeiro, Thallis C.

  • Google
  • 1
  • 15
  • 10

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Zn‐doped MnOx nanowires displaying plentiful crystalline defects and tunable small cross-sections for an optimized volcano-type performance towards supercapacitors10citations

Places of action

Chart of shared publication
Gardener, Jules
1 / 1 shared
Solórzano, Guilhermo
1 / 1 shared
Pessanha, Emanuel C.
1 / 1 shared
Mendonça, Jhonatam P.
1 / 2 shared
Macena, Pedro
1 / 1 shared
Domingues, Sergio H.
1 / 4 shared
Fonsaca, Jéssica E. S.
1 / 4 shared
Santos, Clenilton C. Dos
1 / 1 shared
Dourado, André H. B.
1 / 1 shared
Tanaka, Auro A.
1 / 2 shared
Silva, Anderson G. M. Da
1 / 2 shared
Garcia, Marco A. S.
1 / 1 shared
Lima, Scarllett L. S. De
1 / 1 shared
Santos, Karolinne E. R.
1 / 1 shared
Ribeiro, Geyse A. C.
1 / 1 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Gardener, Jules
  • Solórzano, Guilhermo
  • Pessanha, Emanuel C.
  • Mendonça, Jhonatam P.
  • Macena, Pedro
  • Domingues, Sergio H.
  • Fonsaca, Jéssica E. S.
  • Santos, Clenilton C. Dos
  • Dourado, André H. B.
  • Tanaka, Auro A.
  • Silva, Anderson G. M. Da
  • Garcia, Marco A. S.
  • Lima, Scarllett L. S. De
  • Santos, Karolinne E. R.
  • Ribeiro, Geyse A. C.
OrganizationsLocationPeople

article

Zn‐doped MnOx nanowires displaying plentiful crystalline defects and tunable small cross-sections for an optimized volcano-type performance towards supercapacitors

  • Gardener, Jules
  • Solórzano, Guilhermo
  • Pessanha, Emanuel C.
  • Cordeiro, Thallis C.
  • Mendonça, Jhonatam P.
  • Macena, Pedro
  • Domingues, Sergio H.
  • Fonsaca, Jéssica E. S.
  • Santos, Clenilton C. Dos
  • Dourado, André H. B.
  • Tanaka, Auro A.
  • Silva, Anderson G. M. Da
  • Garcia, Marco A. S.
  • Lima, Scarllett L. S. De
  • Santos, Karolinne E. R.
  • Ribeiro, Geyse A. C.
Abstract

<jats:title>Abstract</jats:title><jats:p>MnO<jats:sub>x</jats:sub>-based nanomaterials are promising large-scale electrochemical energy storage devices due to their high specific capacity, low toxicity, and low cost. However, their slow diffusion kinetics is still challenging, restricting practical applications. Here, a one-pot and straightforward method was reported to produce Zn-doped MnO<jats:sub>x</jats:sub> nanowires with abundant defects and tunable small cross-sections, exhibiting an outstanding specific capacitance. More specifically, based on a facile hydrothermal strategy, zinc sites could be uniformly dispersed in the α-MnO<jats:sub>x</jats:sub> nanowires structure as a function of composition (0.3, 2.1, 4.3, and 7.6 wt.% Zn). Such a process avoided the formation of different crystalline phases during the synthesis. The reproducible method afforded uniform nanowires, in which the size of cross-sections decreased with the increase of Zn composition. Surprisingly, we found a volcano-type relationship between the storage performance and the Zn loading. In this case, we demonstrated that the highest performance material could be achieved by incorporating 2.1 wt.% Zn, exhibiting a remarkable specific capacitance of 1082.2 F.g<jats:sup>−1</jats:sup> at a charge/discharge current density of 1.0 A g<jats:sup>−1</jats:sup> in a 2.0 mol L<jats:sup>−1</jats:sup> KOH electrolyte. The optimized material also afforded improved results for hybrid supercapacitors. Thus, the results presented herein shed new insights into preparing defective and controlled nanomaterials by a simple one-step method for energy storage applications.</jats:p>

Topics
  • density
  • impedance spectroscopy
  • crystalline phase
  • zinc
  • defect
  • current density
  • toxicity