Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Šebeka, Benjaminas

  • Google
  • 1
  • 12
  • 9

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Performance assessment of a triple-junction solar cell with 1.0 eV GaAsBi absorber9citations

Places of action

Chart of shared publication
Paulauskas, Tadas
1 / 2 shared
Devenson, Jan
1 / 2 shared
Geižutis, Andrejus
1 / 1 shared
Kondrotas, Rokas
1 / 5 shared
Strazdienė, Viktorija
1 / 1 shared
Pačebutas, Vaidas
1 / 2 shared
Krotkus, Arūnas
1 / 5 shared
Rudzikas, Matas
1 / 1 shared
Kamarauskas, Mindaugas
1 / 3 shared
Skapas, Martynas
1 / 5 shared
Vretenár, Viliam
1 / 2 shared
Drazdys, Mantas
1 / 3 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Paulauskas, Tadas
  • Devenson, Jan
  • Geižutis, Andrejus
  • Kondrotas, Rokas
  • Strazdienė, Viktorija
  • Pačebutas, Vaidas
  • Krotkus, Arūnas
  • Rudzikas, Matas
  • Kamarauskas, Mindaugas
  • Skapas, Martynas
  • Vretenár, Viliam
  • Drazdys, Mantas
OrganizationsLocationPeople

article

Performance assessment of a triple-junction solar cell with 1.0 eV GaAsBi absorber

  • Paulauskas, Tadas
  • Devenson, Jan
  • Geižutis, Andrejus
  • Kondrotas, Rokas
  • Strazdienė, Viktorija
  • Pačebutas, Vaidas
  • Krotkus, Arūnas
  • Rudzikas, Matas
  • Kamarauskas, Mindaugas
  • Skapas, Martynas
  • Vretenár, Viliam
  • Šebeka, Benjaminas
  • Drazdys, Mantas
Abstract

<jats:title>Abstract</jats:title><jats:p>Group III–V semiconductor multi-junction solar cells are widely used in concentrated-sun and space photovoltaic applications due to their unsurpassed power conversion efficiency and radiation hardness. To further increase the efficiency, new device architectures rely on better bandgap combinations over the mature GaInP/InGaAs/Ge technology, with Ge preferably replaced by a 1.0 eV subcell. Herein, we present a thin-film triple-junction solar cell AlGaAs/GaAs/GaAsBi with 1.0 eV dilute bismide. A compositionally step-graded InGaAs buffer layer is used to integrate high crystalline quality GaAsBi absorber. The solar cells, grown by molecular-beam epitaxy, achieve 19.1% efficiency at AM1.5G spectrum, 2.51 V open-circuit voltage, and 9.86 mA/cm<jats:sup>2</jats:sup> short-circuit current density. Device analysis identifies several routes to significantly improve the performance of the GaAsBi subcell and of the overall solar cell. This study is the first to report on multi-junctions incorporating GaAsBi and is an addition to the research on the use of bismuth-containing III–V alloys in photonic device applications.</jats:p>

Topics
  • density
  • impedance spectroscopy
  • semiconductor
  • hardness
  • current density
  • power conversion efficiency
  • Bismuth