Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Bhardwaj, Shiva

  • Google
  • 1
  • 8
  • 14

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Bimetallic Co–Fe sulfide and phosphide as efficient electrode materials for overall water splitting and supercapacitor14citations

Places of action

Chart of shared publication
Perez, Felio
1 / 1 shared
Sultana, Jolaikha
1 / 1 shared
Gupta, Ram K.
1 / 12 shared
Kumar, Anuj
1 / 7 shared
Mishra, Sanjay R.
1 / 2 shared
Chaudhari, Mahesh
1 / 1 shared
Mageto, Teddy
1 / 1 shared
Srivastava, Rishabh
1 / 1 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Perez, Felio
  • Sultana, Jolaikha
  • Gupta, Ram K.
  • Kumar, Anuj
  • Mishra, Sanjay R.
  • Chaudhari, Mahesh
  • Mageto, Teddy
  • Srivastava, Rishabh
OrganizationsLocationPeople

article

Bimetallic Co–Fe sulfide and phosphide as efficient electrode materials for overall water splitting and supercapacitor

  • Perez, Felio
  • Sultana, Jolaikha
  • Gupta, Ram K.
  • Kumar, Anuj
  • Mishra, Sanjay R.
  • Chaudhari, Mahesh
  • Bhardwaj, Shiva
  • Mageto, Teddy
  • Srivastava, Rishabh
Abstract

<jats:title>Abstract</jats:title><jats:p>The major center of attraction in renewable energy technology is the designing of an efficient material for both electrocatalytic and supercapacitor (SC) applications. Herein, we report the simple hydrothermal method to synthesize cobalt-iron-based nanocomposites followed by sulfurization and phosphorization. The crystallinity of nanocomposites has been confirmed using X-ray diffraction, where crystalline nature improves from as-prepared to sulfurized to phosphorized. The as-synthesized CoFe-nanocomposite requires 263 mV overpotential for oxygen evolution reaction (OER) to reach a current density of 10 mA/cm<jats:sup>2</jats:sup> whereas the phosphorized requires 240 mV to reach 10 mA/cm<jats:sup>2</jats:sup>. The hydrogen evolution reaction (HER) for CoFe-nanocomposite exhibits 208 mV overpotential at 10 mA/cm<jats:sup>2</jats:sup>. Moreover, the results improved after phosphorization showing 186 mV to reach 10 mA/cm<jats:sup>2</jats:sup>. The specific capacitance (C<jats:sub>sp</jats:sub>) of as-synthesized nanocomposite is 120 F/g at 1 A/g, along with a power density of 3752 W/kg and a maximum energy density of 4.3 Wh/kg. Furthermore, the phosphorized nanocomposite shows the best performance by exhibiting 252 F/g at 1 A/g and the highest power and energy density of 4.2 kW/kg and 10.1 Wh/kg. This shows that the results get improved more than twice. The 97% capacitance retention after 5000 cycles shows cyclic stability of phosphorized CoFe. Our research thus offers cost-effective and highly efficient material for energy production and storage applications.</jats:p>

Topics
  • nanocomposite
  • density
  • impedance spectroscopy
  • energy density
  • x-ray diffraction
  • Oxygen
  • Hydrogen
  • cobalt
  • iron
  • current density
  • crystallinity