People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Gloc, Michał
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (17/17 displayed)
- 2023Research on Explosive Hardening of Titanium Grade 2citations
- 2023Comprehensive study upon physicochemical properties of bio-ZnO NCscitations
- 2023Residual stresses of explosively welded bimetal studied by hard X-ray diffractioncitations
- 2023Consideration of a new approach to clarify the mechanism formation of AgNPs, AgNCl and AgNPs@AgNCl synthesized by biological methodcitations
- 2023A Comprehensive Study of a Novel Explosively Hardened Pure Titanium Alloy for Medical Applications
- 2022In situ alloying of NiTi: Influence of laser powder bed fusion (LBPF) scanning strategy on chemical compositioncitations
- 2021Methodological Aspects of Obtaining and Characterizing Composites Based on Biogenic Diatomaceous Silica and Epoxy Resinscitations
- 2021Polyurethane Composite Foams Synthesized Using Bio-Polyols and Cellulose Fillercitations
- 2021Al2O3/ZrO2 Materials as an Environmentally Friendly Solution for Linear Infrastructure Applicationscitations
- 2021A New Method of Diatomaceous Earth Fractionation—A Bio-Raw Material Source for Epoxy-Based Compositescitations
- 2020New Al2O3–Cu–Ni functionally graded composites manufactured using the centrifugal slip castingcitations
- 2020Controlling the Porosity and Biocidal Properties of the Chitosan-Hyaluronate Matrix Hydrogel Nanocomposites by the Addition of 2D Ti3C2Tx MXenecitations
- 2019The influence of degree of fragmentation of Pinus sibirica on flammability, thermal and thermomechanical behavior of the epoxy-compositescitations
- 2019Analysis of the microstructure of an AZ31/AA1050/AA2519 laminate produced using the explosive-welding methodcitations
- 2017The Effect of Heat Treatment on the Microstructure and Properties of Explosively Welded Titanium-Steel Platescitations
- 2017Accumulation and mechanism of the fatigue damage for a nickel based superalloy
- 2016Natural fiber composites: the effect of the kind and content of filler on the dimensional and fire stability of polyolefin-based compositescitations
Places of action
Organizations | Location | People |
---|
article
Consideration of a new approach to clarify the mechanism formation of AgNPs, AgNCl and AgNPs@AgNCl synthesized by biological method
Abstract
<jats:title>Abstract</jats:title><jats:p>The biological methods are considered as environmental-eco-friendly methods for the silver nanocomposites mediation and are widely used in this context. However, the biological methods go along with the relevant limitations, for instance simultaneous synthesis of silver chlorides (AgNCl) type during the AgNPs mediation process. Therefore, the present research is coming to summarize several aspects in this context. Firstly, to present the possible promotion of the sustainable development using bioactive source (e.g. milk) as a source of two different available and new <jats:italic>lactobacillus</jats:italic> strains (<jats:italic>Lactobacillus curvatus</jats:italic> and <jats:italic>Lactobacillus fermentum)</jats:italic>. Secondly, to show the ability of the respective isolates to be involved in mediation of various biosilver nanocomposites ((Bio)NCs) synthesis. Moreover, at this stage, for the first time, two (Bio)NCs mediation methods, called “direct method” and “modified method”, have been developed, thus three types (AgNPs, AgNCl and AgNP@AgNCl) of nanocomposites mediated by two different <jats:italic>Lactobacillus</jats:italic> isolates take place. The interdisciplinary approach included using several spectroscopic, microscopic, spectrometric and thermogravimetric methods demonstrated that all six synthesized nanoparticles (three AgNPs, AgNCl and AgNP@AgNCl types from each source) consist of complex structure including both metallic silver core as well as organic surface deposits. The spectrometric technique allowed to identification of the organics branching surface, naturally secreted by the used <jats:italic>Lactobacillus</jats:italic> isolates during the inoculation step, suggesting the presence of amino-acids sequences which are direct connected with the reduction of silver ion to metal silver, and subsequently with the formation of coated (Bio)NCs and nucleation process. Moreover, based on the obtained results, the mediation mechanism of each (Bio)NCs has been proposed, suggesting that the formation of AgNPs, AgNCl and AgNP@AgNCl types occurs in different manners with faster synthesis firstly of AgNCl, then of the AgNPs type. No differences between the (Bio)NCs synthesized by two different <jats:italic>Lactobacillus</jats:italic> isolates have been noticed indicating no discrepancies between metabolites secreted by the respective sources.</jats:p><jats:p><jats:bold>Graphical abstract</jats:bold></jats:p>