Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Farrés-Godayol, Pau

  • Google
  • 1
  • 6
  • 2

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Determining minimum number of valid days for accurate estimation of sedentary behaviour and awake-time movement behaviours using the ActivPAL3 in nursing home residents2citations

Places of action

Chart of shared publication
Minobes-Molina, Eduard
1 / 1 shared
Ruiz-Díaz, Miguel Ángel
1 / 1 shared
Skelton, Dawn A.
1 / 1 shared
Dall, Philippa
1 / 2 shared
Jerez-Roig, Javier
1 / 1 shared
Giné-Garriga, Maria
1 / 2 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Minobes-Molina, Eduard
  • Ruiz-Díaz, Miguel Ángel
  • Skelton, Dawn A.
  • Dall, Philippa
  • Jerez-Roig, Javier
  • Giné-Garriga, Maria
OrganizationsLocationPeople

article

Determining minimum number of valid days for accurate estimation of sedentary behaviour and awake-time movement behaviours using the ActivPAL3 in nursing home residents

  • Minobes-Molina, Eduard
  • Farrés-Godayol, Pau
  • Ruiz-Díaz, Miguel Ángel
  • Skelton, Dawn A.
  • Dall, Philippa
  • Jerez-Roig, Javier
  • Giné-Garriga, Maria
Abstract

<jats:title>Abstract</jats:title><jats:sec><jats:title>Introduction</jats:title><jats:p>Scarce evidence is available about the minimum number of valid days wearing the activPAL3 to obtain a precise estimate of sedentary behaviour (SB) and awake-time movement behaviours (ATMB) in nursing home (NH) residents. The study aimed to determine the minimum number of valid days required for accurately estimate SB and ATMB using the activPAL3 device in NH residents. It also investigated how the starting point of a day (the 24-h period) impacted reliability.</jats:p></jats:sec><jats:sec><jats:title>Methods</jats:title><jats:p>Participants wore an activPAL3 for 7 consecutive days. The data was classified in two-time blocks (00:00 Ante Meridiem (AM)—00:00 AM midnight vs 12:00 Post Meridiam (PM) -12:00 PM midday) and the sample was stratified into two groups according to their capacity to stand and walk, to examine if timing of sampling or physical functioning affected minimum wear time. SB, ATMB, sociodemographic, and health-related variables were collected. Sensitivity of the time-blocks were tested through the dispersion frequencies and differences between blocks through Kolmogorov–Smirnov test for normality; parametric variables through two-related means T-test and Wilcoxon test for non-parametric data. Reliability was assessed with the Cronbach's Alpha and the intra-class correlation coefficient (ICC), using a one-factor model estimating the reliability for each measurement day loading in the same latent factor.</jats:p></jats:sec><jats:sec><jats:title>Results</jats:title><jats:p>Ninety-five NH residents (81.1% women; age = 85.8 ± 7.2 years) were included. The midnight block had higher reliability, sensitivity and no statistically significant differences between days were found. At least three consecutive days of monitoring were necessary to achieve a reliability of ICC ≥ 0.8 for those NH residents able to stand and walk and six days for those unable.</jats:p></jats:sec><jats:sec><jats:title>Conclusions</jats:title><jats:p>NH residents who are able to stand and walk require a minimum of three consecutive days wearing the device, while those who are unable require at least six days due to their highly homogenous daily routines and sensitivity to PA events. Regardless of the activPAL3 recording start time, data processing should reference the midnight time block.</jats:p></jats:sec>

Topics
  • impedance spectroscopy
  • dispersion
  • size-exclusion chromatography
  • additive manufacturing