Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Aoki, Kenji

  • Google
  • 2
  • 7
  • 34

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2021Experimental study on partial compression parallel to grain of solid timber18citations
  • 2019The effect of wood particle size distribution on the mechanical properties of wood–plastic composite16citations

Places of action

Chart of shared publication
Totsuka, Marina
1 / 1 shared
Jockwer, Robert
1 / 4 shared
Inayama, Masahiro
1 / 1 shared
Kojima, Yoichi
1 / 2 shared
Ogoe, Shinji
1 / 1 shared
Kobori, Hikaru
1 / 1 shared
Suzuki, Shigehiko
1 / 1 shared
Chart of publication period
2021
2019

Co-Authors (by relevance)

  • Totsuka, Marina
  • Jockwer, Robert
  • Inayama, Masahiro
  • Kojima, Yoichi
  • Ogoe, Shinji
  • Kobori, Hikaru
  • Suzuki, Shigehiko
OrganizationsLocationPeople

article

Experimental study on partial compression parallel to grain of solid timber

  • Totsuka, Marina
  • Jockwer, Robert
  • Aoki, Kenji
  • Inayama, Masahiro
Abstract

<p>This paper describes results and analysis of experimental testing of entire and partial compression strength and stiffness parallel to the grain of solid timber (Japanese cedar). To investigate the spreading effects, the size effect of strength and stiffness, and the mechanism of the damage zone located close to the loading plates, tests on 90 specimens were performed. As a result, it was observed that damage zones existed near the loading plates. The observed spreading effects in the compression parallel to the grain were very small which justifies neglecting them regarding strength and stiffness. Although a presence of a size effect of the compression strength parallel to the grain of glulam specimens with knots was reported, the compression strength parallel to the grain of solid wood specimens without knots does not have a size effect. The height and width of the cross-section of the specimens have an influence on the damage zones and, hence, on the effective modulus of elasticity of the full height of the specimens. The compression strength has a correlation with the density of the timber and the width of the annual rings.</p>

Topics
  • density
  • grain
  • strength
  • elasticity
  • wood