People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Stepien, Milena
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (4/4 displayed)
- 2015Roll-to-roll coating by liquid flame spray nanoparticle depositioncitations
- 2014Abrasion and Compression Resistance of Liquid-Flame-Spray-Deposited Functional Nanoparticle Coatings on Paper
- 2013Compressibility of porous TiO₂ nanoparticle coating on paperboardcitations
- 2013ToF-SIMS analysis of UV-switchable TiO₂-nanoparticle-coated paper surfacecitations
Places of action
Organizations | Location | People |
---|
article
Compressibility of porous TiO₂ nanoparticle coating on paperboard
Abstract
Compressibility of liquid flame spray-deposited porous TiO2 nanoparticle coating was studied on paperboard samples using a traditional calendering technique in which the paperboard is compressed between a metal and polymer roll. Surface superhydrophobicity is lost due to a smoothening effect when the number of successive calendering cycles is increased. Field emission scanning electron microscope surface and cross-sectional images support the atomic force microscope roughness analysis that shows a significant compressibility of the deposited TiO2 nanoparticle coating with decrease in the surface roughness and nanoscale porosity under external pressure.