Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Metzger, S.

  • Google
  • 1
  • 4
  • 6

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2012Genetic analysis of polymorphisms in the kalirin gene for association with age-at-onset in European Huntington disease patients.6citations

Places of action

Chart of shared publication
Nguyen, Huu Phuc
1 / 1 shared
As, Soehn
1 / 1 shared
Riess, Olaf
1 / 4 shared
Yc, Tsai
1 / 2 shared
Chart of publication period
2012

Co-Authors (by relevance)

  • Nguyen, Huu Phuc
  • As, Soehn
  • Riess, Olaf
  • Yc, Tsai
OrganizationsLocationPeople

article

Genetic analysis of polymorphisms in the kalirin gene for association with age-at-onset in European Huntington disease patients.

  • Nguyen, Huu Phuc
  • As, Soehn
  • Riess, Olaf
  • Yc, Tsai
  • Metzger, S.
Abstract

<h4>Background</h4>Huntington disease (HD) is caused by an expanded CAG repeat in the HD gene. Although the length of the CAG repeat strongly correlates with the age-at-onset (AAO), AAO in HD individuals may differ dramatically in spite of similar expanded CAG repeat lengths. Additional genetic or environmental factors are thought to influence the disease onset. Several modifier genes have been discovered so far but they do not fully explain the variability of AAO in HD. To potentially identify a novel genetic modifier, we analyzed single nucleotide polymorphisms (SNPs) in the kalirin (KALRN) gene. Kalirin is a protein crucially involved in spine plasticity and its interaction with huntingtin-associated protein-1 (HAP-1) and a potential protein dysfunction might contribute to spine pathogenesis in HD.<h4>Methods</h4>The selected SNPs were genotyped by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and association of SNPs with AAO was investigated with the framework of linear models in an analysis of variance and covariance.<h4>Results</h4>Eleven SNPs in the kalirin gene were examined in an association study in European HD patients. The ten coding SNPs under investigation were monomorphic, whereas SNP rs10934657 in the promoter region showed a minor allele frequency >1%. An analysis of covariance together with the influence of the expanded HD allele was applied in 680 HD patients. SNP rs10934657 did not affect the AAO of the examined HD population.<h4>Conclusions</h4>The results did not reveal an association between the analyzed kalirin polymorphisms and the AAO in HD. However, it does not exclude other SNPs of the kalirin gene as susceptible genetic modifiers.

Topics
  • impedance spectroscopy
  • plasticity