Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Cannon, Ralph

  • Google
  • 1
  • 5
  • 7

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2016Ferrostalderite, CuFe2TlAs2S6, a new mineral from Lengenbach, Switzerland: Occurrence, crystal structure, and emphasis on the role of iron in sulfosalts7citations

Places of action

Chart of shared publication
Biagioni, Cristian
1 / 16 shared
Nestola, Fabrizio
1 / 6 shared
Roth, Philippe
1 / 2 shared
Bindi, Luca
1 / 16 shared
Raber, Thomas
1 / 2 shared
Chart of publication period
2016

Co-Authors (by relevance)

  • Biagioni, Cristian
  • Nestola, Fabrizio
  • Roth, Philippe
  • Bindi, Luca
  • Raber, Thomas
OrganizationsLocationPeople

article

Ferrostalderite, CuFe2TlAs2S6, a new mineral from Lengenbach, Switzerland: Occurrence, crystal structure, and emphasis on the role of iron in sulfosalts

  • Biagioni, Cristian
  • Nestola, Fabrizio
  • Roth, Philippe
  • Bindi, Luca
  • Cannon, Ralph
  • Raber, Thomas
Abstract

The new mineral species ferrostalderite, CuFe2TlAs2S6, was discovered in the Lengenbach quarry, Binn Valley, Wallis, Switzerland. It occurs as minute, metallic, black, equant to prismatic crystals, up to 50 μm, associated with dolomite, realgar, baumhauerite (?) and pyrite. Minimum and maximum reflectance data for COM wavelengths in air are [λ (nm): R (%)]: 471.1: 24.2/25.4; 548.3: 23.7/24.7; 586.6: 22.9/23.8; 652.3: 21.0/22.0. Electron microprobe analyses give (wt.%): Cu 6.24(25), Ag 4.18(9), Fe 9.95(83), Zn 4.46(91), Hg 1.22(26), Tl 26.86(62), As 19.05(18), Sb 0.63(6), S 25.39(47), total 97.98(72). On the basis of 12 atoms per formula unit, the chemical formula of ferrostalderite is Cu0.75(2)Ag0.30(1)Fe1.36(10)Zn0.52(11)Hg0.05(1)Tl1.00(1)[As1.94(4)Sb0.04(1)]λ1.98(4)S6.04(4). The new mineral is tetragonal, space group I42 m,with a = 9.8786(5), c = 10.8489(8) Å, V = 1058.71(11) Å3, Z = 4. The main diffraction lines of the calculated powder diagram are [d (in Å), intensity, hkl]: 4.092, 70, 211; 3.493, 23, 220; 3.396, 35, 103; 3.124, 17, 310; 2.937, 100, 222; 2.656, 19, 321; 2.470, 19, 400; 2.435, 33, 303. The crystal structure of ferrostalderite has been refined by X-ray single-crystal data to a final R1 = 0.050, on the basis of 1169 reflections with F0 > 4σ(F0). It shows a three dimensional framework of (Cu,Fe)-centred tetrahedra (1M1 + 2M2), with channels parallel to [001] hosting disymmetric TlS6 and (As,Sb)S3 polyhedra. Ferrostalderite is derived from its isotype stalderite M1CuM2Zn2TlAs2S6 through the homovalent substitution M2Zn2+ → M2Fe2+. The ideal crystal-chemical formula of ferrostalderite is M1CuM2Fe2TlAs2S6.

Topics
  • impedance spectroscopy
  • mineral
  • copper
  • iron
  • space group
  • Arsenic
  • Thallium