People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Spratt, John
Natural History Museum
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2022Polytypism in mcalpineite: a study of natural and synthetic Cu3TeO6citations
- 2021Kernowite, Cu<sub>2</sub>Fe(AsO<sub>4</sub>)(OH)<sub>4</sub>⋅4H<sub>2</sub>O, the Fe<sup>3+</sup>-analogue of liroconite from Cornwall, UKcitations
- 2021Oscillatory- and sector-zoned pyrochlore from carbonatites of the Kerimasi volcano, Gregory rift, Tanzaniacitations
- 2021Elucidating the natural–synthetic mismatch of Pb2+Te4+O3: The redefinition of fairbankite to Pb122+(Te4+O3)11(SO4)citations
- 2021Native tungsten from the Bol'shaya Pol'ya river valley and Mt Neroyka, Russia
- 2021Wildcatite, CaFe3+Te6+O5(OH), the second new tellurate mineral from the Detroit district, Juab County, Utahcitations
- 2021Hybridization of Alkali Basaltic Magmas: a Case Study of the Ogol Lavas from the Laetoli Area, Crater Highlands (Tanzania)citations
- 2019Dokuchaevite, Cu<sub>8</sub>O<sub>2</sub>(VO<sub>4</sub>)<sub>3</sub>Cl<sub>3</sub>, a new mineral with remarkably diverse Cu<sup>2+</sup> mixed-ligand coordination environmentscitations
- 2019The crystal structures of the mixed-valence tellurium oxysalts tlapallite, (Ca,Pb)<sub>3</sub>CaCu<sub>6</sub>[Te<sup>4+</sup><sub>3</sub>Te<sup>6+</sup>O<sub>12</sub>]<sub>2</sub>(Te<sup>4+</sup>O<sub>3</sub>)<sub>2</sub>(SO<sub>4</sub>)<sub>2</sub>·3H<sub>2</sub>O, and carlfriesite, CaTe<sup>4+</sup><sub>2</sub>Te<sup>6+</sup>O<sub>8</sub>citations
- 2015Barrydawsonite-(Y), Na<sub>1.5</sub>CaY<sub>0.5</sub>Si<sub>3</sub>O<sub>9</sub>H: a new pyroxenoid of the pectolite–serandite groupcitations
- 2013Diegogattaite, Na<sub>2</sub>CaCu<sub>2</sub>Si<sub>8</sub>O<sub>2</sub>0·H<sub>2</sub>O: a new nanoporous copper sheet silicate from Wessels Mine, Kalahari Manganese Fields, Republic of South Africacitations
Places of action
Organizations | Location | People |
---|
article
Diegogattaite, Na<sub>2</sub>CaCu<sub>2</sub>Si<sub>8</sub>O<sub>2</sub>0·H<sub>2</sub>O: a new nanoporous copper sheet silicate from Wessels Mine, Kalahari Manganese Fields, Republic of South Africa
Abstract
<jats:title>Abstract</jats:title><jats:p>Diegogattaite (IMA2012-096), Na<jats:sub>2</jats:sub>CaCu<jats:sub>2</jats:sub>Si<jats:sub>8</jats:sub>O<jats:sub>20</jats:sub>·H<jats:sub>2</jats:sub>O, is a new mineral from the Wessels mine in the Kalahari manganese fields of South Africa. It occurs as a minor phase with other copper-bearing silicates, Cu-rich pectolite,sugilite, quartz, aegirine and undifferentiated Fe-Mn oxides. Diegogattaite is pale turquoise through teal blue. It is found as sub-mm sized grains in a main crystalline patch 3–4 mm in size, and is currently known from only one sample. The mineral is transparent with a vitreous lustreand may have a good cleavage on {001}. It is brittle, with an uneven fracture and a very pale-blue streak. It is non-fluorescent in short- and long-wave UV light and has an estimated Mohs hardness of ∼5–6. Diegogattaite is biaxial (–), α = 1.598(2), β = 1.627(2),γ = 1.632(2); 2V<jats:sub>meas</jats:sub> = 44.0(6)°, 2V<jats:sub>calc</jats:sub> = 44.5°; dispersion: strong <jats:italic>r < v</jats:italic>, orientation: <jats:italic>X = b, Y</jats:italic> ≈ ⊥(001), <jats:italic>Z</jats:italic> ≈ <jats:italic>a</jats:italic>; pleochroism X colourless << <jats:italic>Y ≈ Z</jats:italic> blue green. The calculated densityis 3.10 g/cm<jats:sup>3</jats:sup>. Electron-microprobe analysis gave: Na<jats:sub>2</jats:sub>O 8.07, CaO 7.3, CuO 20.5, FeO 0.36, SiO<jats:sub>262</jats:sub>.4, H<jats:sub>2</jats:sub>O<jats:sub>(calc)</jats:sub> 2.34, total 100.97 wt.%. A charge-balanced formula on the basis of 21 oxygen a.p.f.u. is: Na<jats:sub>2.00</jats:sub>Ca<jats:sub>1.00</jats:sub>Cu<jats:sub>1.98</jats:sub>Fe<jats:sub>0.04</jats:sub>Si<jats:sub>7.99</jats:sub>H<jats:sub>2</jats:sub>O<jats:sub>21</jats:sub>.Diegogattaite is monoclinic, space group C2/<jats:italic>m</jats:italic>, <jats:italic>a</jats:italic> = 12.2439(6) Å, <jats:italic>b</jats:italic> = 15.7514(4) Å, <jats:italic>c</jats:italic> = 10.6008(3) Å, β = 125.623(2)°, <jats:italic>V</jats:italic> = 1661.87(10) Å<jats:sup>3</jats:sup> and <jats:italic>Z</jats:italic> = 4. The five strongest lines in the X-ray powder pattern are[d<jats:sub>obs</jats:sub> in Å <jats:italic>(I<jats:sub>obs</jats:sub>)(hkl)</jats:italic>]: 4.25(75)(002,<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0026461X00012329_inline02.png" />22,220), 3.951(77)(040), 3.261(100)(<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0026461X00012329_inline01.png" />31,<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0026461X00012329_inline01.png" />13), 2.898(89)(042,<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0026461X00012329_inline04.png" />03,003), 2.332(66)(331,<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0026461X00012329_inline04.png" />43,<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0026461X00012329_inline02.png" />62,260,043). The crystal structure of diegogattaite was determined by single-crystal X-ray diffraction to finalagreement indices of <jats:italic>R</jats:italic><jats:sub>1</jats:sub> = 0.027, <jats:italic>wR</jats:italic><jats:sub>2</jats:sub> = 0.071 and GoF = 1.090. It represents a completely new silicate topology based upon a double-sheet of SiO<jats:sub>4</jats:sub> tetrahedra composed of connected 6<jats:sup>4</jats:sup>8<jats:sup>2</jats:sup> cages. The structure of diegogattaiteis related to those of synthetic nanoporous Na-Cu-Si-O-(OH)-H<jats:sub>2</jats:sub>O (CuSH) compounds, which are of interest to the solid-state chemistry community as potential ion-exchangers, catalysts and molecular sieves. The structure of diegogattaite forms a bridge between these structures andthose of the gillespite-group minerals, including wesselsite. The close spatial association of wesselsite and diegogattaite suggests a possible reaction between them that may point to a synthetic route for the production of novel alkaline-earth-based nanoporous copper silicates.</jats:p>