Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Spratt, John

  • Google
  • 11
  • 23
  • 67

Natural History Museum

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (11/11 displayed)

  • 2022Polytypism in mcalpineite: a study of natural and synthetic Cu3TeO610citations
  • 2021Kernowite, Cu<sub>2</sub>Fe(AsO<sub>4</sub>)(OH)<sub>4</sub>⋅4H<sub>2</sub>O, the Fe<sup>3+</sup>-analogue of liroconite from Cornwall, UK1citations
  • 2021Oscillatory- and sector-zoned pyrochlore from carbonatites of the Kerimasi volcano, Gregory rift, Tanzania13citations
  • 2021Elucidating the natural–synthetic mismatch of Pb2+Te4+O3: The redefinition of fairbankite to Pb122+(Te4+O3)11(SO4)2citations
  • 2021Native tungsten from the Bol'shaya Pol'ya river valley and Mt Neroyka, Russiacitations
  • 2021Wildcatite, CaFe3+Te6+O5(OH), the second new tellurate mineral from the Detroit district, Juab County, Utah1citations
  • 2021Hybridization of Alkali Basaltic Magmas: a Case Study of the Ogol Lavas from the Laetoli Area, Crater Highlands (Tanzania)1citations
  • 2019Dokuchaevite, Cu<sub>8</sub>O<sub>2</sub>(VO<sub>4</sub>)<sub>3</sub>Cl<sub>3</sub>, a new mineral with remarkably diverse Cu<sup>2+</sup> mixed-ligand coordination environments14citations
  • 2019The crystal structures of the mixed-valence tellurium oxysalts tlapallite, (Ca,Pb)<sub>3</sub>CaCu<sub>6</sub>[Te<sup>4+</sup><sub>3</sub>Te<sup>6+</sup>O<sub>12</sub>]<sub>2</sub>(Te<sup>4+</sup>O<sub>3</sub>)<sub>2</sub>(SO<sub>4</sub>)<sub>2</sub>·3H<sub>2</sub>O, and carlfriesite, CaTe<sup>4+</sup><sub>2</sub>Te<sup>6+</sup>O<sub>8</sub>8citations
  • 2015Barrydawsonite-(Y), Na<sub>1.5</sub>CaY<sub>0.5</sub>Si<sub>3</sub>O<sub>9</sub>H: a new pyroxenoid of the pectolite–serandite group8citations
  • 2013Diegogattaite, Na<sub>2</sub>CaCu<sub>2</sub>Si<sub>8</sub>O<sub>2</sub>0·H<sub>2</sub>O: a new nanoporous copper sheet silicate from Wessels Mine, Kalahari Manganese Fields, Republic of South Africa9citations

Places of action

Chart of shared publication
Mills, Stuart J.
2 / 3 shared
Hadermann, Joke
1 / 40 shared
Missen, Owen P.
2 / 3 shared
Libowitzky, Eugen
1 / 2 shared
Rumsey, Michael S.
2 / 2 shared
Artner, Werner
1 / 1 shared
Housley, Robert M.
1 / 1 shared
Canossa, Stefano
1 / 3 shared
Weil, Matthias
1 / 4 shared
Dunstan, Maja
1 / 1 shared
Nénert, Gwilherm
1 / 5 shared
Mccormack, John K.
1 / 1 shared
Kampf, Anthony R.
1 / 2 shared
Marty, Joe
1 / 1 shared
Raudsepp, Mati
1 / 1 shared
Najorka, Jens
1 / 1 shared
Coolbaugh, Mark F.
1 / 1 shared
Zaitsev, Anatoly N.
1 / 1 shared
Marks, Michael A. W.
1 / 1 shared
Markl, Gregor
1 / 1 shared
Wenzel, Thomas
1 / 1 shared
Braunger, Simon
1 / 1 shared
Salge, Tobias
1 / 1 shared
Chart of publication period
2022
2021
2019
2015
2013

Co-Authors (by relevance)

  • Mills, Stuart J.
  • Hadermann, Joke
  • Missen, Owen P.
  • Libowitzky, Eugen
  • Rumsey, Michael S.
  • Artner, Werner
  • Housley, Robert M.
  • Canossa, Stefano
  • Weil, Matthias
  • Dunstan, Maja
  • Nénert, Gwilherm
  • Mccormack, John K.
  • Kampf, Anthony R.
  • Marty, Joe
  • Raudsepp, Mati
  • Najorka, Jens
  • Coolbaugh, Mark F.
  • Zaitsev, Anatoly N.
  • Marks, Michael A. W.
  • Markl, Gregor
  • Wenzel, Thomas
  • Braunger, Simon
  • Salge, Tobias
OrganizationsLocationPeople

article

Oscillatory- and sector-zoned pyrochlore from carbonatites of the Kerimasi volcano, Gregory rift, Tanzania

  • Spratt, John
Abstract

<jats:title>Abstract</jats:title><jats:p>The Quaternary carbonatite–nephelinite Kerimasi volcano is located within the Gregory rift in northern Tanzania. It is composed of nephelinitic and carbonatitic pyroclastic rocks, tuffs, tuff breccias and pyroclastic breccias, which contain blocks of different plutonic (predominantly ijolite) and volcanic (predominantly nephelinite) rocks including carbonatites. The plutonic and volcanic carbonatites both contain calcite as the major mineral with variable amounts of magnetite or magnesioferrite, apatite and forsterite. Carbonatites also contain accessory baddeleyite, kerimasite, pyrochlore and calzirtite. Zr and Nb minerals are rarely observed in rock samples, though they are abundant in eluvial deposits of carbonatite tuff/pyroclastic breccias in the Loluni and Kisete craters. Pyrochlore, ideally (CaNa)Nb<jats:sub>2</jats:sub>O<jats:sub>6</jats:sub>F, occurs as octahedral and cubo-octahedral crystals up to 300 μm in size. Compositionally, pyrochlore from Loluni and Kisete differs. The former is enriched in U (up to 19.4 wt.% UO<jats:sub>2</jats:sub>), light rare earth elements (up to 8.3 wt.% LREE<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub>) and Zr (up to 14.4 wt.% ZrO<jats:sub>2</jats:sub>), and the latter contains elevated Ti (up to 7.3 wt.% TiO<jats:sub>2</jats:sub>). All the crystals investigated were crystalline, including those with high U content (<jats:italic>a</jats:italic> = 10.4152(1) Å for Loluni and <jats:italic>a</jats:italic> = 10.3763(1) Å for Kisete crystals). They have little or no subsolidus alteration nor low-temperature cation exchange (<jats:italic>A</jats:italic>-site vacancy up to 1.5% of the site), and are suitable for single-crystal X-ray diffraction analysis (<jats:italic>R</jats:italic><jats:sub>1</jats:sub> = 0.0206 and 0.0290; for all independent reflections for Loluni and Kisete crystals, respectively). Observed variations in the pyrochlore composition, particularly Zr content, from the Loluni and Kisete craters suggest crystallisation from compositionally different carbonatitic melts. The majority of pyrochlore crystals studied exhibit exceptionally well-preserved oscillatory- and sometimes sector-type zoning. The preferential incorporation of smaller and higher charged elements into more geometrically constrained sites on the growing surfaces explains the formation of the sector zoning. The oscillatory zoning can be rationalised by considering convectional instabilities of carbonatite magmas during their emplacement.</jats:p>

Topics
  • impedance spectroscopy
  • mineral
  • surface
  • x-ray diffraction
  • melt
  • vacancy
  • rare earth metal