People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Spratt, John
Natural History Museum
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2022Polytypism in mcalpineite: a study of natural and synthetic Cu3TeO6citations
- 2021Kernowite, Cu<sub>2</sub>Fe(AsO<sub>4</sub>)(OH)<sub>4</sub>⋅4H<sub>2</sub>O, the Fe<sup>3+</sup>-analogue of liroconite from Cornwall, UKcitations
- 2021Oscillatory- and sector-zoned pyrochlore from carbonatites of the Kerimasi volcano, Gregory rift, Tanzaniacitations
- 2021Elucidating the natural–synthetic mismatch of Pb2+Te4+O3: The redefinition of fairbankite to Pb122+(Te4+O3)11(SO4)citations
- 2021Native tungsten from the Bol'shaya Pol'ya river valley and Mt Neroyka, Russia
- 2021Wildcatite, CaFe3+Te6+O5(OH), the second new tellurate mineral from the Detroit district, Juab County, Utahcitations
- 2021Hybridization of Alkali Basaltic Magmas: a Case Study of the Ogol Lavas from the Laetoli Area, Crater Highlands (Tanzania)citations
- 2019Dokuchaevite, Cu<sub>8</sub>O<sub>2</sub>(VO<sub>4</sub>)<sub>3</sub>Cl<sub>3</sub>, a new mineral with remarkably diverse Cu<sup>2+</sup> mixed-ligand coordination environmentscitations
- 2019The crystal structures of the mixed-valence tellurium oxysalts tlapallite, (Ca,Pb)<sub>3</sub>CaCu<sub>6</sub>[Te<sup>4+</sup><sub>3</sub>Te<sup>6+</sup>O<sub>12</sub>]<sub>2</sub>(Te<sup>4+</sup>O<sub>3</sub>)<sub>2</sub>(SO<sub>4</sub>)<sub>2</sub>·3H<sub>2</sub>O, and carlfriesite, CaTe<sup>4+</sup><sub>2</sub>Te<sup>6+</sup>O<sub>8</sub>citations
- 2015Barrydawsonite-(Y), Na<sub>1.5</sub>CaY<sub>0.5</sub>Si<sub>3</sub>O<sub>9</sub>H: a new pyroxenoid of the pectolite–serandite groupcitations
- 2013Diegogattaite, Na<sub>2</sub>CaCu<sub>2</sub>Si<sub>8</sub>O<sub>2</sub>0·H<sub>2</sub>O: a new nanoporous copper sheet silicate from Wessels Mine, Kalahari Manganese Fields, Republic of South Africacitations
Places of action
Organizations | Location | People |
---|
article
Dokuchaevite, Cu<sub>8</sub>O<sub>2</sub>(VO<sub>4</sub>)<sub>3</sub>Cl<sub>3</sub>, a new mineral with remarkably diverse Cu<sup>2+</sup> mixed-ligand coordination environments
Abstract
<jats:title>Abstract</jats:title><jats:p>Dokuchaevite, ideally Cu<jats:sub>8</jats:sub>O<jats:sub>2</jats:sub>(VO<jats:sub>4</jats:sub>)<jats:sub>3</jats:sub>Cl<jats:sub>3</jats:sub>, was found in the Yadovitaya fumarole of the Second scoria cone of the North Breach of the Great Tolbachik Fissure Eruption (1975–1976), Tolbachik volcano, Kamchatka Peninsula, Russia. Dokuchaevite occurs on the crusts of various copper sulfate exhalative minerals (such as kamchatkite and euchlorine) as individual prismatic crystals. Dokuchaevite is triclinic, <jats:italic>P</jats:italic><jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:type="simple" xlink:href="S0026461X19000410_inline1" /><jats:tex-math>${1}$</jats:tex-math></jats:alternatives></jats:inline-formula>, <jats:italic>a</jats:italic> = 6.332(3), <jats:italic>b</jats:italic> = 8.204(4), <jats:italic>c</jats:italic> = 15.562(8) Å, α = 90.498(8), β = 97.173(7), γ = 90.896(13)°, <jats:italic>V</jats:italic> = 801.9(7) Å<jats:sup>3</jats:sup> and <jats:italic>R</jats:italic><jats:sub>1</jats:sub> = 0.057. The eight strongest lines of the X-ray powder diffraction pattern are (<jats:italic>d</jats:italic>, Å (<jats:italic>I</jats:italic>)(<jats:italic>hkl</jats:italic>): (15.4396)(18)(00<jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:type="simple" xlink:href="S0026461X19000410_inline2" /><jats:tex-math>${1}$</jats:tex-math></jats:alternatives></jats:inline-formula>), (7.2762)(27)(0<jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:type="simple" xlink:href="S0026461X19000410_inline3" /><jats:tex-math>${1}$</jats:tex-math></jats:alternatives></jats:inline-formula>1), (5.5957)(43)(012), (4.8571)(33)(<jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:type="simple" xlink:href="S0026461X19000410_inline4" /><jats:tex-math>${1}{1}$</jats:tex-math></jats:alternatives></jats:inline-formula>1), (3.1929) (29)(023), (2.7915)(30)(202), (2.5645)(21)(032), (2.5220)(100)(1<jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:type="simple" xlink:href="S0026461X19000410_inline5" /><jats:tex-math>${3}$</jats:tex-math></jats:alternatives></jats:inline-formula>0), (2.4906)(18)(130) and (2.3267)(71)(2<jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:type="simple" xlink:href="S0026461X19000410_inline6" /><jats:tex-math>${2}$</jats:tex-math></jats:alternatives></jats:inline-formula>2). The chemical composition determined by electron-microprobe analysis is (wt.%): CuO 60.87, ZnO 0.50, FeO 0.36, V<jats:sub>2</jats:sub>O<jats:sub>5</jats:sub> 19.85, As<jats:sub>2</jats:sub>O<jats:sub>5</jats:sub> 6.96, SO<jats:sub>3</jats:sub> 0.44, MoO<jats:sub>3</jats:sub> 1.41, SiO<jats:sub>2</jats:sub> 0.20, P<jats:sub>2</jats:sub>O<jats:sub>5</jats:sub> 0.22, Cl 10.66, –O = Cl<jats:sub>2</jats:sub> 2.41, total 99.06. The empirical formula calculated on the basis of 17 anions per formula unit is (Cu<jats:sub>7.72</jats:sub>Zn<jats:sub>0.06</jats:sub>Fe<jats:sub>0.05</jats:sub>)<jats:sub>Σ7.83</jats:sub>(V<jats:sub>2.20</jats:sub>As<jats:sub>0.61</jats:sub>Mo<jats:sub>0.10</jats:sub>S<jats:sub>0.06</jats:sub>P<jats:sub>0.03</jats:sub>Si<jats:sub>0.03</jats:sub>)<jats:sub>Σ3.03</jats:sub>O<jats:sub>13.96</jats:sub>Cl<jats:sub>3.04</jats:sub>.</jats:p><jats:p>The crystal structure of dokuchaevite represents a new structure type with eight Cu sites, which demonstrate the remarkable diversity of Cu<jats:sup>2+</jats:sup> mixed-ligand coordination environments. The crystal structure of dokuchaevite is based on OCu<jats:sub>4</jats:sub> tetrahedra that share common corners thus forming [O<jats:sub>2</jats:sub>Cu<jats:sub>6</jats:sub>]<jats:sup>8+</jats:sup> single chains. Two of the eight symmetrically independent copper atoms do not form Cu–O bonds with additional oxygen atoms, and thus are not part of the OCu<jats:sub>4</jats:sub> tetrahedra, but provide the three-dimensional integrity of the [O<jats:sub>2</jats:sub>Cu<jats:sub>6</jats:sub>]<jats:sup>8+</jats:sup> chains into a framework. <jats:italic>T</jats:italic>O<jats:sub>4</jats:sub> mixed tetrahedral groups are located within the cavities of the framework. The structural formula of dokuchaevite can be represented as Cu<jats:sub>2</jats:sub>[Cu<jats:sub>6</jats:sub>O<jats:sub>2</jats:sub>](VO<jats:sub>4</jats:sub>)<jats:sub>3</jats:sub>Cl<jats:sub>3</jats:sub>.</jats:p>