Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Spratt, John

  • Google
  • 11
  • 23
  • 67

Natural History Museum

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (11/11 displayed)

  • 2022Polytypism in mcalpineite: a study of natural and synthetic Cu3TeO610citations
  • 2021Kernowite, Cu<sub>2</sub>Fe(AsO<sub>4</sub>)(OH)<sub>4</sub>⋅4H<sub>2</sub>O, the Fe<sup>3+</sup>-analogue of liroconite from Cornwall, UK1citations
  • 2021Oscillatory- and sector-zoned pyrochlore from carbonatites of the Kerimasi volcano, Gregory rift, Tanzania13citations
  • 2021Elucidating the natural–synthetic mismatch of Pb2+Te4+O3: The redefinition of fairbankite to Pb122+(Te4+O3)11(SO4)2citations
  • 2021Native tungsten from the Bol'shaya Pol'ya river valley and Mt Neroyka, Russiacitations
  • 2021Wildcatite, CaFe3+Te6+O5(OH), the second new tellurate mineral from the Detroit district, Juab County, Utah1citations
  • 2021Hybridization of Alkali Basaltic Magmas: a Case Study of the Ogol Lavas from the Laetoli Area, Crater Highlands (Tanzania)1citations
  • 2019Dokuchaevite, Cu<sub>8</sub>O<sub>2</sub>(VO<sub>4</sub>)<sub>3</sub>Cl<sub>3</sub>, a new mineral with remarkably diverse Cu<sup>2+</sup> mixed-ligand coordination environments14citations
  • 2019The crystal structures of the mixed-valence tellurium oxysalts tlapallite, (Ca,Pb)<sub>3</sub>CaCu<sub>6</sub>[Te<sup>4+</sup><sub>3</sub>Te<sup>6+</sup>O<sub>12</sub>]<sub>2</sub>(Te<sup>4+</sup>O<sub>3</sub>)<sub>2</sub>(SO<sub>4</sub>)<sub>2</sub>·3H<sub>2</sub>O, and carlfriesite, CaTe<sup>4+</sup><sub>2</sub>Te<sup>6+</sup>O<sub>8</sub>8citations
  • 2015Barrydawsonite-(Y), Na<sub>1.5</sub>CaY<sub>0.5</sub>Si<sub>3</sub>O<sub>9</sub>H: a new pyroxenoid of the pectolite–serandite group8citations
  • 2013Diegogattaite, Na<sub>2</sub>CaCu<sub>2</sub>Si<sub>8</sub>O<sub>2</sub>0·H<sub>2</sub>O: a new nanoporous copper sheet silicate from Wessels Mine, Kalahari Manganese Fields, Republic of South Africa9citations

Places of action

Chart of shared publication
Mills, Stuart J.
2 / 3 shared
Hadermann, Joke
1 / 40 shared
Missen, Owen P.
2 / 3 shared
Libowitzky, Eugen
1 / 2 shared
Rumsey, Michael S.
2 / 2 shared
Artner, Werner
1 / 1 shared
Housley, Robert M.
1 / 1 shared
Canossa, Stefano
1 / 3 shared
Weil, Matthias
1 / 4 shared
Dunstan, Maja
1 / 1 shared
Nénert, Gwilherm
1 / 5 shared
Mccormack, John K.
1 / 1 shared
Kampf, Anthony R.
1 / 2 shared
Marty, Joe
1 / 1 shared
Raudsepp, Mati
1 / 1 shared
Najorka, Jens
1 / 1 shared
Coolbaugh, Mark F.
1 / 1 shared
Zaitsev, Anatoly N.
1 / 1 shared
Marks, Michael A. W.
1 / 1 shared
Markl, Gregor
1 / 1 shared
Wenzel, Thomas
1 / 1 shared
Braunger, Simon
1 / 1 shared
Salge, Tobias
1 / 1 shared
Chart of publication period
2022
2021
2019
2015
2013

Co-Authors (by relevance)

  • Mills, Stuart J.
  • Hadermann, Joke
  • Missen, Owen P.
  • Libowitzky, Eugen
  • Rumsey, Michael S.
  • Artner, Werner
  • Housley, Robert M.
  • Canossa, Stefano
  • Weil, Matthias
  • Dunstan, Maja
  • Nénert, Gwilherm
  • Mccormack, John K.
  • Kampf, Anthony R.
  • Marty, Joe
  • Raudsepp, Mati
  • Najorka, Jens
  • Coolbaugh, Mark F.
  • Zaitsev, Anatoly N.
  • Marks, Michael A. W.
  • Markl, Gregor
  • Wenzel, Thomas
  • Braunger, Simon
  • Salge, Tobias
OrganizationsLocationPeople

article

Dokuchaevite, Cu<sub>8</sub>O<sub>2</sub>(VO<sub>4</sub>)<sub>3</sub>Cl<sub>3</sub>, a new mineral with remarkably diverse Cu<sup>2+</sup> mixed-ligand coordination environments

  • Spratt, John
Abstract

<jats:title>Abstract</jats:title><jats:p>Dokuchaevite, ideally Cu<jats:sub>8</jats:sub>O<jats:sub>2</jats:sub>(VO<jats:sub>4</jats:sub>)<jats:sub>3</jats:sub>Cl<jats:sub>3</jats:sub>, was found in the Yadovitaya fumarole of the Second scoria cone of the North Breach of the Great Tolbachik Fissure Eruption (1975–1976), Tolbachik volcano, Kamchatka Peninsula, Russia. Dokuchaevite occurs on the crusts of various copper sulfate exhalative minerals (such as kamchatkite and euchlorine) as individual prismatic crystals. Dokuchaevite is triclinic, <jats:italic>P</jats:italic><jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:type="simple" xlink:href="S0026461X19000410_inline1" /><jats:tex-math>${1}$</jats:tex-math></jats:alternatives></jats:inline-formula>, <jats:italic>a</jats:italic> = 6.332(3), <jats:italic>b</jats:italic> = 8.204(4), <jats:italic>c</jats:italic> = 15.562(8) Å, α = 90.498(8), β = 97.173(7), γ = 90.896(13)°, <jats:italic>V</jats:italic> = 801.9(7) Å<jats:sup>3</jats:sup> and <jats:italic>R</jats:italic><jats:sub>1</jats:sub> = 0.057. The eight strongest lines of the X-ray powder diffraction pattern are (<jats:italic>d</jats:italic>, Å (<jats:italic>I</jats:italic>)(<jats:italic>hkl</jats:italic>): (15.4396)(18)(00<jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:type="simple" xlink:href="S0026461X19000410_inline2" /><jats:tex-math>${1}$</jats:tex-math></jats:alternatives></jats:inline-formula>), (7.2762)(27)(0<jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:type="simple" xlink:href="S0026461X19000410_inline3" /><jats:tex-math>${1}$</jats:tex-math></jats:alternatives></jats:inline-formula>1), (5.5957)(43)(012), (4.8571)(33)(<jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:type="simple" xlink:href="S0026461X19000410_inline4" /><jats:tex-math>${1}{1}$</jats:tex-math></jats:alternatives></jats:inline-formula>1), (3.1929) (29)(023), (2.7915)(30)(202), (2.5645)(21)(032), (2.5220)(100)(1<jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:type="simple" xlink:href="S0026461X19000410_inline5" /><jats:tex-math>${3}$</jats:tex-math></jats:alternatives></jats:inline-formula>0), (2.4906)(18)(130) and (2.3267)(71)(2<jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:type="simple" xlink:href="S0026461X19000410_inline6" /><jats:tex-math>${2}$</jats:tex-math></jats:alternatives></jats:inline-formula>2). The chemical composition determined by electron-microprobe analysis is (wt.%): CuO 60.87, ZnO 0.50, FeO 0.36, V<jats:sub>2</jats:sub>O<jats:sub>5</jats:sub> 19.85, As<jats:sub>2</jats:sub>O<jats:sub>5</jats:sub> 6.96, SO<jats:sub>3</jats:sub> 0.44, MoO<jats:sub>3</jats:sub> 1.41, SiO<jats:sub>2</jats:sub> 0.20, P<jats:sub>2</jats:sub>O<jats:sub>5</jats:sub> 0.22, Cl 10.66, –O = Cl<jats:sub>2</jats:sub> 2.41, total 99.06. The empirical formula calculated on the basis of 17 anions per formula unit is (Cu<jats:sub>7.72</jats:sub>Zn<jats:sub>0.06</jats:sub>Fe<jats:sub>0.05</jats:sub>)<jats:sub>Σ7.83</jats:sub>(V<jats:sub>2.20</jats:sub>As<jats:sub>0.61</jats:sub>Mo<jats:sub>0.10</jats:sub>S<jats:sub>0.06</jats:sub>P<jats:sub>0.03</jats:sub>Si<jats:sub>0.03</jats:sub>)<jats:sub>Σ3.03</jats:sub>O<jats:sub>13.96</jats:sub>Cl<jats:sub>3.04</jats:sub>.</jats:p><jats:p>The crystal structure of dokuchaevite represents a new structure type with eight Cu sites, which demonstrate the remarkable diversity of Cu<jats:sup>2+</jats:sup> mixed-ligand coordination environments. The crystal structure of dokuchaevite is based on OCu<jats:sub>4</jats:sub> tetrahedra that share common corners thus forming [O<jats:sub>2</jats:sub>Cu<jats:sub>6</jats:sub>]<jats:sup>8+</jats:sup> single chains. Two of the eight symmetrically independent copper atoms do not form Cu–O bonds with additional oxygen atoms, and thus are not part of the OCu<jats:sub>4</jats:sub> tetrahedra, but provide the three-dimensional integrity of the [O<jats:sub>2</jats:sub>Cu<jats:sub>6</jats:sub>]<jats:sup>8+</jats:sup> chains into a framework. <jats:italic>T</jats:italic>O<jats:sub>4</jats:sub> mixed tetrahedral groups are located within the cavities of the framework. The structural formula of dokuchaevite can be represented as Cu<jats:sub>2</jats:sub>[Cu<jats:sub>6</jats:sub>O<jats:sub>2</jats:sub>](VO<jats:sub>4</jats:sub>)<jats:sub>3</jats:sub>Cl<jats:sub>3</jats:sub>.</jats:p>

Topics
  • impedance spectroscopy
  • mineral
  • Oxygen
  • chemical composition
  • copper
  • forming