Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Fredrickson, Rie Takagi

  • Google
  • 4
  • 6
  • 9

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2023As predicted and more: modulated channel occupation in YZn5+x 2citations
  • 2022Local Stability to Periodicity in the EuMg5+x Type: Chemical Pressure, Disordered Channels, and Predicted Superstructure in YZn5.2254citations
  • 2019Agmantinite, Ag2MnSnS4, a new mineral with a wurtzite derivative structure from the Uchucchacua polymetallic deposit, Lima Department, Peru3citations
  • 2008A new synthetic strategy for low-dimensional compounds : Lone pair cations and alkaline earth spacerscitations

Places of action

Chart of shared publication
Fredrickson, Daniel
2 / 2 shared
Kamp, Kendall R.
1 / 1 shared
Keutsch, Frank N.
1 / 1 shared
Paar, Werner H.
1 / 4 shared
Makovicky, Emil
1 / 2 shared
Topa, Dan
1 / 2 shared
Chart of publication period
2023
2022
2019
2008

Co-Authors (by relevance)

  • Fredrickson, Daniel
  • Kamp, Kendall R.
  • Keutsch, Frank N.
  • Paar, Werner H.
  • Makovicky, Emil
  • Topa, Dan
OrganizationsLocationPeople

article

Agmantinite, Ag2MnSnS4, a new mineral with a wurtzite derivative structure from the Uchucchacua polymetallic deposit, Lima Department, Peru

  • Keutsch, Frank N.
  • Paar, Werner H.
  • Makovicky, Emil
  • Fredrickson, Rie Takagi
  • Topa, Dan
Abstract

<jats:title>Abstract</jats:title><jats:p>Agmantinite, ideally Ag<jats:sub>2</jats:sub>MnSnS<jats:sub>4</jats:sub>, is a new mineral from the Uchucchacua polymetallic deposit, Oyon district, Catajambo, Lima Department, Peru. It occurs as orange–red crystals up to 100 μm across. Agmantinite is translucent with adamantine lustre and possesses a red streak. It is brittle. Neither fracture nor cleavage were observed. Based on the empirical formula the calculated density is 4.574 g/cm<jats:sup>3</jats:sup>. On the basis of chemically similar compounds the Mohs hardness is estimated at between 2 to 2½. In plane-polarised light agmantinite is white with red internal reflections. It is weakly bireflectant with no observable pleochroism with red internal reflections. Between crossed polars, agmantinite is weakly anisotropic with reddish brown to greenish grey rotation tints. The reflectances (<jats:italic>R</jats:italic><jats:sub>min</jats:sub>and<jats:italic>R</jats:italic><jats:sub>max</jats:sub>) for the four standard wavelengths are: 19.7 and 22.0 (470 nm); 20.5 and 23.2 (546 nm); 21.7 and 2.49 (589 nm); and 20.6 and 23.6 (650 nm), respectively.</jats:p><jats:p>Agmantinite is orthorhombic, space group<jats:italic>P</jats:italic>2<jats:sub>1</jats:sub><jats:italic>nm</jats:italic>, with unit-cell parameters:<jats:italic>a</jats:italic>= 6.632(2),<jats:italic>b</jats:italic>= 6.922(2),<jats:italic>c</jats:italic>= 8.156(2) Å,<jats:italic>V</jats:italic>= 374.41(17) Å<jats:sup>3</jats:sup>,<jats:italic>a</jats:italic>:<jats:italic>b</jats:italic>:<jats:italic>c</jats:italic>0.958:1:1.178 and<jats:italic>Z</jats:italic>= 2. The crystal structure was refined to<jats:italic>R</jats:italic>= 0.0575 for 519 reflections with<jats:italic>I &amp;gt;</jats:italic>2σ(<jats:italic>I</jats:italic>). Agmantinite is the first known mineral of<jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:href="S0026461X18001391_inline1" xlink:type="simple" /><jats:tex-math>${M}_{ 2}^{ I} $</jats:tex-math></jats:alternatives></jats:inline-formula><jats:italic>M</jats:italic><jats:sup>II</jats:sup><jats:italic>M</jats:italic><jats:sup>IV</jats:sup>S<jats:sub>4</jats:sub>type that is derived from wurtzite rather than sphalerite by ordered substitution of Zn, analogous to the substitution pattern for deriving stannite from sphalerite. The six strongest X-ray powder-diffraction lines derived from single-crystal X-ray diffraction data [<jats:italic>d</jats:italic>in Å (intensity)] are: 3.51 (s), 3.32 (w), 3.11 (vs), 2.42 (w), 2.04 (m) and 1.88 (m). The empirical formula (based on 8 apfu) is (Ag<jats:sub>1.94</jats:sub>Cu<jats:sub>0.03</jats:sub>)<jats:sub>Σ1.97</jats:sub>(Mn<jats:sub>0.98</jats:sub>Zn<jats:sub>0.05</jats:sub>)<jats:sub>Σ1.03</jats:sub>Sn<jats:sub>0.97</jats:sub>S<jats:sub>4.03</jats:sub>.The crystal structure-derived formula is Ag<jats:sub>2</jats:sub>(Mn<jats:sub>0.69</jats:sub>Zn<jats:sub>0.31</jats:sub>)<jats:sub>Σ1.00</jats:sub>SnS<jats:sub>4</jats:sub>and the simplified formula is Ag<jats:sub>2</jats:sub>MnSnS<jats:sub>4</jats:sub>.</jats:p><jats:p>The name is for the composition and the new mineral and mineral name have been approved by the International Mineralogical Association Commission on New Minerals, Nomenclature and Classification (IMA2014-083).</jats:p>

Topics
  • density
  • impedance spectroscopy
  • mineral
  • compound
  • x-ray diffraction
  • anisotropic
  • hardness
  • space group