Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Duncanson, P.

  • Google
  • 1
  • 5
  • 22

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2005Surface modification of bioceramics by grafting of tailored allyl phosphonic acid22citations

Places of action

Chart of shared publication
Phillips, M. J.
1 / 2 shared
Darr, J. A.
1 / 14 shared
Griffiths, D. V.
1 / 2 shared
Rehman, Ihtesham Ur
1 / 71 shared
Wilson, K.
1 / 11 shared
Chart of publication period
2005

Co-Authors (by relevance)

  • Phillips, M. J.
  • Darr, J. A.
  • Griffiths, D. V.
  • Rehman, Ihtesham Ur
  • Wilson, K.
OrganizationsLocationPeople

article

Surface modification of bioceramics by grafting of tailored allyl phosphonic acid

  • Phillips, M. J.
  • Darr, J. A.
  • Griffiths, D. V.
  • Rehman, Ihtesham Ur
  • Duncanson, P.
  • Wilson, K.
Abstract

A new route to interfacial bonding between ceramic and matrix in biocomposites is identified. A tailored allyl phosphonic acid is used as a coupling agent bound to the surface of a bioceramic to form a 'grafted' calcium phosphate (CAP). The allyl phosphonic acid coupling agent is synthesised by reaction of allyl halide and trialkyl phosphite. Successful synthesis was confirmed by nuclear magnetic resonance and Fourier transform infrared spectroscopy (FTIR). The allyl phosphonic acid was incorporated onto calcium phosphate using a wet chemical coprecipitation synthesis route. The resulting 'grafted' CAP was characterised using FTIR coupled with photoacoustic sampling, and Fourier transform Raman spectroscopy (FTR). The spectroscopic data suggest an interaction between the allyl phosphonic acid and calcium phosphate resulting from observed reductions in intensity of the hydroxyl (3570 cm-1) and phosphate V3 (1030 cm-1) peaks. The continued presence of C=C functionality on the surface of the grafted CAP was indicated by FTIR and FTR spectra (peaks at 1650 and 1635 cm-1 respectively) and confirmed by X-ray photoelectron spectroscopy (XPS). On the basis of these results, it is concluded that grafted CAP may be used to produce a chemically bonded composite with superior mechanical properties. © 2005 Institute of Materials, Minerals and Mining.

Topics
  • impedance spectroscopy
  • mineral
  • surface
  • x-ray photoelectron spectroscopy
  • composite
  • ceramic
  • Calcium
  • Raman spectroscopy
  • Fourier transform infrared spectroscopy