Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Lewis, M. H.

  • Google
  • 1
  • 5
  • 15

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2005Enhanced fracture toughness by ceramic laminate design15citations

Places of action

Chart of shared publication
Dobedoe, R. S.
1 / 1 shared
Kuebler, J.
1 / 34 shared
Vann, Roddy
1 / 1 shared
Blugan, G.
1 / 16 shared
Gee, I. A.
1 / 1 shared
Chart of publication period
2005

Co-Authors (by relevance)

  • Dobedoe, R. S.
  • Kuebler, J.
  • Vann, Roddy
  • Blugan, G.
  • Gee, I. A.
OrganizationsLocationPeople

article

Enhanced fracture toughness by ceramic laminate design

  • Dobedoe, R. S.
  • Kuebler, J.
  • Lewis, M. H.
  • Vann, Roddy
  • Blugan, G.
  • Gee, I. A.
Abstract

<p>A review of the potential toughening and failure mechanisms for ceramic laminate materials is presented. An integrated approach to the design of ceramic laminates incorporating biaxial residual stresses for specific applications is outlined. Restrictions placed on the laminate architecture to avoid spontaneous transverse cracking of the tensile layer are discussed. The phenomena of edge cracking and crack bifurcation are considered with reference to elastic moduli, Poisson's ratio, mismatch in thermal expansion coefficients, temperature gradient and laminate architecture. The use of compressive layers to produce a material that exhibits a threshold strength and criteria for increasing the critical applied stress below which failure will not occur are reported. A single edge V-notched beam (SEVNB) test geometry was used to measure crack growth resistance (R curve) behaviour of multilayer Si3N4/Si3N4-TiN composites. Fracture mechanics weight function analysis was applied to predict the R curve behaviour of multilayer composites having a stepwise change in composition. A conservative, non-optimised laminate design exhibiting apparent fracture toughness in excess of 17 MPa m(1/2) is reported, in excellent agreement with the weight function analysis.</p>

Topics
  • impedance spectroscopy
  • crack
  • strength
  • composite
  • thermal expansion
  • ceramic
  • tin
  • fracture toughness
  • Poisson's ratio