Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Rau, S. R.

  • Google
  • 2
  • 9
  • 6

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2014Effect of Silver Nanoparticles on the Mechanical and Physical Properties of Epoxy Based Silane Coupling Agent1citations
  • 2014Scratch resistance enhancement of 3-glycidyloxypropyltrimethoxysilane coating incorporated with silver nanoparticles5citations

Places of action

Chart of shared publication
Arun, N.
2 / 3 shared
Vengadaesvaran, B.
2 / 3 shared
Bushroa, A. R.
2 / 2 shared
Chanthiriga, R.
2 / 2 shared
Al-Shabeeb, G. H. E.
2 / 2 shared
Ramesh, S.
2 / 12 shared
Arof, Abdul Kariem
2 / 2 shared
Ramesh, K.
2 / 5 shared
Vikneswaran, R.
1 / 1 shared
Chart of publication period
2014

Co-Authors (by relevance)

  • Arun, N.
  • Vengadaesvaran, B.
  • Bushroa, A. R.
  • Chanthiriga, R.
  • Al-Shabeeb, G. H. E.
  • Ramesh, S.
  • Arof, Abdul Kariem
  • Ramesh, K.
  • Vikneswaran, R.
OrganizationsLocationPeople

article

Scratch resistance enhancement of 3-glycidyloxypropyltrimethoxysilane coating incorporated with silver nanoparticles

  • Arun, N.
  • Vengadaesvaran, B.
  • Vikneswaran, R.
  • Bushroa, A. R.
  • Chanthiriga, R.
  • Rau, S. R.
  • Al-Shabeeb, G. H. E.
  • Ramesh, S.
  • Arof, Abdul Kariem
  • Ramesh, K.
Abstract

An effective method to enhance scratch resistance was developed using a 3-glycidyloxyproplytrimethoxysilane as a base on the formation of a transparent coating on glass substrate. The addition of silver nanoparticles improves further the scratch hardness of the thin film coating. The critical load obtained from the microscratch test increases from 2931 to 3319 mN upon the addition of silver nanoparticles. The size of silver nanoparticle was analysed using transmission electron microscope (TEM) and was found to be in the range of 20–40 nm. Addition of silver nanoparticles also increases the surface energy; hence the result enhances the hydrophobicity compared to substrate with only GLYMO coated on it.

Topics
  • nanoparticle
  • surface
  • silver
  • thin film
  • glass
  • glass
  • hardness
  • transmission electron microscopy
  • surface energy