Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Suhadi, Amin

  • Google
  • 1
  • 2
  • 4

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2006The role of sublayer in determining the load bearing capacity of nitrocarburised pure iron4citations

Places of action

Chart of shared publication
Dong, Hanshan
1 / 42 shared
Bell, Thomas
1 / 10 shared
Chart of publication period
2006

Co-Authors (by relevance)

  • Dong, Hanshan
  • Bell, Thomas
OrganizationsLocationPeople

article

The role of sublayer in determining the load bearing capacity of nitrocarburised pure iron

  • Dong, Hanshan
  • Bell, Thomas
  • Suhadi, Amin
Abstract

Plasma austenitic nitrocarburising as well as plasma ferritic nitrocarburising treatments of pure iron have been carried out in a modified dc plasma unit at 700 degrees C with a gas mixture of nitrogen, hydrogen and organic vapour as the carbon-nitrogen media supplier. The composition, phase structure, microstructure and hardness of the plasma nitrocarburised surface were characterised by a number of materials analytical techniques. The load bearing capacities of ferritic nitrocarburised and austenitic carburised samples were evaluated using a Falex tribometer, and the effect of the sublayer in determining the load bearing capacity of plasma nitrocarburised material was investigated. The experimental results show that the load bearing capacity of plasma nitrocarburised pure iron is mainly determined by the hardness of the sublayer. The load bearing capacity of plasma nitrocarburised pure iron increases in the order of (i) plasma ferritic nitrocarburised, (ii) plasma austenitic nitrocarburised and slow cooled, and (iii) plasma austenitic nitrocarburised, quenched and subzero treated. Based on the experimental results, the role of the sublayer in determining the load bearing capacity of plasma nitrocarburised material is discussed.

Topics
  • impedance spectroscopy
  • microstructure
  • surface
  • Carbon
  • phase
  • Nitrogen
  • hardness
  • Hydrogen
  • iron