Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Michael, H.

  • Google
  • 2
  • 7
  • 18

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2006Effects of interface reactions in complatibilised ground tyre rubber polypropylene etastomeric alloys18citations
  • 2002Morphology and mechanical properties of elastomeric alloys from rubber crumb and thermoplasticscitations

Places of action

Chart of shared publication
Zichner, Marco
1 / 18 shared
Wießner, Sven
1 / 16 shared
Wagenknecht, Udo
1 / 3 shared
Heinrich, G.
1 / 38 shared
Mennig, G.
1 / 2 shared
Scholz, H.
1 / 1 shared
Pötschke, Petra
1 / 330 shared
Chart of publication period
2006
2002

Co-Authors (by relevance)

  • Zichner, Marco
  • Wießner, Sven
  • Wagenknecht, Udo
  • Heinrich, G.
  • Mennig, G.
  • Scholz, H.
  • Pötschke, Petra
OrganizationsLocationPeople

article

Effects of interface reactions in complatibilised ground tyre rubber polypropylene etastomeric alloys

  • Zichner, Marco
  • Wießner, Sven
  • Wagenknecht, Udo
  • Michael, H.
  • Heinrich, G.
Abstract

<p>Compounds of ground tyre rubber (GTR) and polypropylene (PP) were prepared in an internal mixer and characterised by means of mechanical, thermal and morphological testing. Only physical melt mixing could not provide a suitable interface compatibilisation and leads to compounds with poor mechanical properties. However, the application of a reactive melt mixing process, using organic peroxides as radical donators, was found to be suitable to initiate a compatibilisation reaction via interphase grafting. These compatibilised GTR/PP elastomeric alloy (EA) systems exhibit interesting mechanical properties which are close to that of conventional two phase thermoplastic elastomers (TPE) based on dynamically vulcanised ethylene propylene diene monomer (EPDM)/PP blends. Results of the morphology investigations substantiate the occurrence of a compatibilisation reaction between rubber particles and PP matrix during reactive mixing which is most probably responsible for the enhanced material properties of the GTR/PP EA.</p>

Topics
  • impedance spectroscopy
  • morphology
  • compound
  • melt
  • reactive
  • thermoplastic
  • rubber
  • elemental analysis
  • elastomer
  • melt mixing
  • thermoplastic elastomer