People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Barrioz, Vincent
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (26/26 displayed)
- 2023A structural, optical and electrical comparison between physical vapour deposition and slot-die deposition of Al:ZnO (AZO)
- 2022Elimination of the carbon-rich layer in Cu2ZnSn(S, Se)4 absorbers prepared from nanoparticle inkscitations
- 2022Routes to Increase Performance for Antimony Selenide Solar Cells using Inorganic Hole Transport Layerscitations
- 2022Ex-situ Ge-doping of CZTS Nanocrystals and CZTSSe Solar Absorber Filmscitations
- 2022Exploring the Role of Temperature and Hole Transport Layer on the Ribbon Orientation and Efficiency of Sb2Se3 cells Deposited via Thermal Evaporation
- 2022Ex situ Ge-doping of CZTS nanocrystals and CZTSSe solar absorber films.citations
- 2022Recovery mechanisms in aged kesterite solar cellscitations
- 2020Innovative fabrication of low-cost kesterite solar cells for distributed energy applications
- 2019Solution processing route to Na incorporation in CZTSSe nanoparticle ink solar cells on foil substratecitations
- 2018Temperature controlled properties of sub-micron thin SnS filmscitations
- 2018Temperature controlled properties of sub-micron thin SnS filmscitations
- 2018Photovoltaic performance of CdS/CdTe junctions on ZnO nanorod arrayscitations
- 2017Effects of Cd 1-x Zn x S alloy composition and post-deposition air anneal on ultra-thin CdTe solar cells produced by MOCVDcitations
- 2017A combined Na and Cl treatment to promote grain growth in MOCVD grown CdTe thin filmscitations
- 2016Sodium Induced Microstructural Changes in MOCVD-Grown CdTe Thin Films
- 2015MOCVD of SnSx thin films for solar cell application
- 2015Influence of CdCl2 activation treatment on ultra-thin Cd1−xZnxS/CdTe solar cellscitations
- 2014Investigation into ultrathin CdTe solar cell Voc using SCAPS modellingcitations
- 2014Investigation into ultrathin CdTe solar cellVocusing SCAPS modellingcitations
- 2014Cadmium Telluride Solar Cells on Ultrathin Glass for Space Applicationscitations
- 2013Developing Monolithically Integrated CdTe Devices Deposited by AP-MOCVD
- 2013Numerical simulation of the deposition process and the epitaxial growth of cadmium telluride thin film in a MOCVD reactorcitations
- 2011Impedance spectroscopy of thin-film CdTe/CdS solar cells under varied illuminationcitations
- 2010A feasibility study towards ultra-thin PV solar cell devices by MOCDV based on a p-i-n structure incorporating pyrite
- 2009Impedance spectroscopy of thin-film CdTe/CdS solar cells under varied illuminationcitations
- 2008The application of a statistical methodology to investigate deposition parameters in CdTe/CdS solar cells grown by MOCVDcitations
Places of action
Organizations | Location | People |
---|
article
Investigation into ultrathin CdTe solar cellVocusing SCAPS modelling
Abstract
Ultrathin CdTe photovoltaic solar cells were produced by metal organic chemical vapour deposition in a single horizontally configured growth chamber. Solar cell activation was investigated by varying the duration of the CdCl2 layer deposition and 420°C thermal anneal to promote Cl diffusion into the CdTe. Thicker CdCl2 layers used in activation treatment resulted in a greater degree of sulphur interdiffusion, up to 2 at.-%, into the CdTe layer. The thicker CdCl2 activation layer was necessary to lower the reverse saturation current density for obtaining optimum experimental photovoltaic (PV) device performances. Modelling of the PV performances with equivalent solar cell structure for optimised devices using solar cell capacitance simulation software resulted in an overestimated open circuit voltage (Voc). The simulations showed that reduced acceptor states at the CdTe interface with the intermixed region resulted in the largest decrease in Voc when considering large back surface recombination velocities.