Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Saxén, H.

  • Google
  • 1
  • 5
  • 41

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2010Analysing blast furnace data using evolutionary neural network and multiobjective genetic algorithms41citations

Places of action

Chart of shared publication
Chakraborti, N.
1 / 4 shared
Agarwal, A.
1 / 6 shared
Tewary, U.
1 / 1 shared
Das, S.
1 / 43 shared
Pettersson, Frank
1 / 28 shared
Chart of publication period
2010

Co-Authors (by relevance)

  • Chakraborti, N.
  • Agarwal, A.
  • Tewary, U.
  • Das, S.
  • Pettersson, Frank
OrganizationsLocationPeople

article

Analysing blast furnace data using evolutionary neural network and multiobjective genetic algorithms

  • Chakraborti, N.
  • Agarwal, A.
  • Saxén, H.
  • Tewary, U.
  • Das, S.
  • Pettersson, Frank
Abstract

<p>Approximately one year's operational data of a TATA Steel blast furnace were subjected to a multiobjective optimisation using genetic algorithms. Data driven models were constructed for productivity, CO<sub>2</sub> content of the top gas and Si content of the hot metal, using an evolutionary neural network that itself evolved through a multiobjective genetic algorithm as a tradeoff between the accuracy of training and the network complexity. The final networks were selected using the corrected Akaike information criterion. Bi-objective optimisation studies were subsequently carried out between the productivity and CO<sub>2</sub> content with various constraints at the Si level in the hot metal. The results indicate that a productivity increase would entail either a compromise of the CO<sub>2</sub> fraction in the top gas or the Si content in the hot metal. The Pareto frontiers presented in this study provide the best possible parameter settings in such a scenario.</p>

Topics
  • steel