Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Rahimi, S.

  • Google
  • 14
  • 19
  • 219

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (14/14 displayed)

  • 2023Residual stress distributions in dissimilar titanium alloy diffusion bonds produced from powder using field-assisted sintering technology (FAST-DB)citations
  • 2022Unravelling thermal-mechanical effects on microstructure evolution under superplastic forming conditions in a near alpha titanium alloy15citations
  • 2019A new method for predicting susceptibility of austenitic stainless steels to intergranular stress corrosion cracking26citations
  • 2016Effects of orientation, stress and exposure time on short intergranular stress corrosion crack behaviour in sensitised type 304 austenitic stainless steel16citations
  • 2016Influence of microstructure and stress on short intergranular stress corrosion crack growth in austenitic stainless steel type 304citations
  • 2016Characterisation of grain boundary cluster compactness in austenitic stainless steel15citations
  • 2016In situ observation of intergranular crack nucleation in a grain boundary controlled austenitic stainless steel.60citations
  • 2013A multiscale constitutive model for intergranular stress corrosion cracking in type 304 austenitic stainless steel3citations
  • 2013A multiscale constitutive model for intergranular stress corrosion cracking in type 304 austenitic stainless steel3citations
  • 2010Towards understanding the development of grain boundary clusters in austenitic stainless steel3citations
  • 2010Towards understanding the development of grain boundary clusters in austenitic stainless steel3citations
  • 2010Characterisation of the Sensitisation Behaviour of Thermo-mechanically Processed Type 304 Stainless Steel Using DL-EPR Testing and Image Analysis Methodscitations
  • 2010Characterisation of grain boundary cluster compactness in austenitic stainless steel15citations
  • 2009In situ observation of intergranular crack nucleation in a grain boundary controlled austenitic stainless steel60citations

Places of action

Chart of shared publication
Pope, J.
1 / 1 shared
Jackson, M.
1 / 43 shared
Levano Blanch, O.
1 / 4 shared
Violatos, I.
1 / 1 shared
Hopper, C.
1 / 1 shared
Jiang, J.
1 / 20 shared
Yasmeen, T.
1 / 1 shared
Zhao, B.
1 / 15 shared
Marrow, T.
5 / 51 shared
Engelberg, D.
2 / 17 shared
Duff, J.
1 / 14 shared
Siddiq, Amir
1 / 4 shared
Siddiq, M. Amir
1 / 49 shared
Engelberg, Dl
4 / 90 shared
A., D. L. Engelberg
1 / 1 shared
Marrow, T. J.
5 / 47 shared
Engelberg A., D. L.
1 / 1 shared
Engelberg, Dirk
1 / 16 shared
Duff, J. A.
1 / 3 shared
Chart of publication period
2023
2022
2019
2016
2013
2010
2009

Co-Authors (by relevance)

  • Pope, J.
  • Jackson, M.
  • Levano Blanch, O.
  • Violatos, I.
  • Hopper, C.
  • Jiang, J.
  • Yasmeen, T.
  • Zhao, B.
  • Marrow, T.
  • Engelberg, D.
  • Duff, J.
  • Siddiq, Amir
  • Siddiq, M. Amir
  • Engelberg, Dl
  • A., D. L. Engelberg
  • Marrow, T. J.
  • Engelberg A., D. L.
  • Engelberg, Dirk
  • Duff, J. A.
OrganizationsLocationPeople

article

Characterisation of grain boundary cluster compactness in austenitic stainless steel

  • Engelberg, Dl
  • Marrow, T. J.
  • Rahimi, S.
Abstract

The distribution of grain boundaries of particular crystallographic character can provide descriptive information on the properties of engineering materials. For example, the fraction and connectivity of corrosion susceptible grain boundaries typically correlates with the extent of intergranular corrosion and stress corrosion cracking resistance in sensitised austenitic stainless steels. A parameter defining the cluster compactness is proposed to describe the breakup of the network of corrosion susceptible grain boundaries. It may therefore provide a measure of intergranular stress corrosion cracking resistance. The cluster compactness of the network of random grain boundaries (>∑29) in electron backscatter diffraction assessments of microstructure is shown to decrease with increasing fraction of ∑3 boundaries. However, the cluster compactness of the network of corroded grain boundaries identified after electrochemical testing is less sensitive to changes in microstructure obtained by thermomechanical processing. © 2010 Institute of Materials, Minerals and Mining.

Topics
  • impedance spectroscopy
  • mineral
  • cluster
  • grain
  • stainless steel
  • grain boundary
  • laser emission spectroscopy
  • random
  • electron backscatter diffraction
  • stress corrosion
  • intergranular corrosion