Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Caramia, V.

  • Google
  • 1
  • 3
  • 3

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2015Anodic deposition of compact, freely-standing or microporous polypyrrole films from aqueous methanesulphonic acid3citations

Places of action

Chart of shared publication
Ponce De León, C.
1 / 46 shared
Walsh, F. C.
1 / 33 shared
Low, C. T. J.
1 / 10 shared
Chart of publication period
2015

Co-Authors (by relevance)

  • Ponce De León, C.
  • Walsh, F. C.
  • Low, C. T. J.
OrganizationsLocationPeople

article

Anodic deposition of compact, freely-standing or microporous polypyrrole films from aqueous methanesulphonic acid

  • Ponce De León, C.
  • Caramia, V.
  • Walsh, F. C.
  • Low, C. T. J.
Abstract

Freely-standing and flexible films (0.075 to 9 mm in thickness) of electrically conducting polypyrrole were synthesised via anodic electrodeposition onto a stainless steel substrate from methanesulphonic acid under stirred conditions at 295 K. Cyclic voltammetry was used to study<br/>the effect of pyrrole monomer concentration (0.01 to 1.0 mol dm-3) and methanesulphonic acid level (1.0 to 6.0 mol dm-3) on the formation of polypyrrole films. The films were prepared for deposition times of 30–240 s at constant current densities of 1 to 15 mA cm-2. The ionic conductivity of freely-standing polypyrrole membranes in aqueous methanesulphonic acid was studied. Scanning electron microscopy was used to image the surface microstructure. The polypyrrole films, which were prepared in the oxidised (methanesulphonate doped), conductive<br/>state, showed an ionic area resistance as low as 10 ohm cm2. The films were readily doped with the methanesulphonate anion and the membrane ionic conductivity was dependent on the electrolyte composition used for their deposition. In the presence of anodic oxygen evolution, the<br/>films showed a ‘template-free’ porosity due to film growth around the bubbles.

Topics
  • surface
  • stainless steel
  • scanning electron microscopy
  • Oxygen
  • porosity
  • electrodeposition
  • cyclic voltammetry