People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Wilson, Bp
Aalto University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (20/20 displayed)
- 2023Assessment of environmental sustainability of nickel required for mobility transitioncitations
- 2022Electrochemical Growth of Ag/Zn Alloys from Zinc Process Solutions and Their Dealloying Behaviorcitations
- 2022A New Hydrometallurgical Process for Metal Extraction from Electric Arc Furnace Dust Using Ionic Liquidscitations
- 2022Green and Controllable Preparation of Cu/Zn Alloys Using Combined Electrodeposition and Redox Replacementcitations
- 2022Targeted surface modification of Cu/Zn/Ag coatings and Ag/Cu particles based on sacrificial element selection by electrodeposition and redox replacementcitations
- 2021Cyclic voltammetry and potentiodynamic polarization studies of chalcopyrite concentrate in glycine mediumcitations
- 2021Biopolymeric Anticorrosion Coatings from Cellulose Nanofibrils and Colloidal Lignin Particlescitations
- 2020A sustainable two-layer lignin-anodized composite coating for the corrosion protection of high-strength low-alloy steelcitations
- 2020Investigation of the anticorrosion performance of lignin coatings after crosslinking with triethyl phosphate and their adhesion to a polyurethane topcoat
- 2019Modelling of silver anode dissolution and the effect of gold as impurity under simulated industrial silver electrorefining conditionscitations
- 2018From waste to valuable resource: Lignin as a sustainable anti-corrosion coatingcitations
- 2018A direct synthesis of platinum/nickel co-catalysts on titanium dioxide nanotube surface from hydrometallurgical-type process streamscitations
- 2018Selective reductive leaching of cobalt and lithium from industrially crushed waste Li-ion batteries in sulfuric acid systemcitations
- 2018Kinetic study and modelling of silver dissolution in synthetic industrial silver electrolyte as a function of electrolyte composition and temperaturecitations
- 2017Strongly reduced thermal conductivity in hybrid ZnO/nanocellulose thin filmscitations
- 2017Carbon Nanostructure Based Platform for Enzymatic Glutamate Biosensorscitations
- 2017Leaching of Sb from TROF furnace Doré slagcitations
- 2016Carbon nanotube-copper composites by electrodeposition on carbon nanotube fiberscitations
- 2006Formation of ultra-thin amorphous conversion films on zinc alloy coatingscitations
- 2002Investigating changes in corrosion mechanism induced by laser welding galvanised steel specimens using scanning vibrating electrode techniquecitations
Places of action
Organizations | Location | People |
---|
article
Investigating changes in corrosion mechanism induced by laser welding galvanised steel specimens using scanning vibrating electrode technique
Abstract
<p>A novel three-dimensional scanning vibrating electrode technique (3D SVET) apparatus is described, which uses a bifunctional probe to record topographical and current density data. This apparatus is used to investigate the localised corrosion occurring on 2 cm<sup>2</sup> exposed areas of flat specimens of electroplated zinc and galvannealed (Zn-Fe alloy coated) 1.2 mm sheet steel and specimens of the same substrates laser welded together, freely corroding in near neutral, aerated, aqueous chloride electrolyte. On flat galvannealed (IZ) specimens anodic events are highly localised and occur at random over the exposed specimen surface during a 24 h immersion period. This reflects the progressive dezincification of zinc rich areas of the iron zinc intermetallic coating. By contrast on flat electroplated zinc (EZ) specimens anodic activity is localised but corrosion initiates at a single anodic centre, eventually spreading out to form a scar on the metallic surface. This concentration of anodic activity on the specimen leads to greater dezincification than for the IZ coating. The SVET data was used to provide an estimate of the total zinc loss from the 2 cm<sup>2</sup> exposed area on the coupons of 544 μg for EZ and 236 μg for IZ respectively. The close physical proximity of anodic and cathodic events in the latter substrate is believed to lead to greater zinc (hydr) oxide formation and hence lower measured zinc loss. Laser welded specimens were prepared by joining IZ to IZ and IZ to EZ coated 1.2 mm steel panels. A 2 cm<sup>2</sup> exposed area was investigated using SVET with ca. 1 cm<sup>2</sup> exposed either side of the weld. The joining of IZ specimens together using a laser weld changes the localisation of anodic activity in neutral aerated sodium chloride solution dramatically. In this instance focal anodes initially concentrate next to the weld area in a zone enriched in zinc (and depleted in iron) as a result of the welding process. This localisation of anodic and cathodic activity next to the weld reduces the anodic damage on the IZ remote to the heat affected zone. When specimens of EZ and IZ are laser welded together all anodic activity becomes focussed on the EZ specimens with a total zinc loss over 24 h from the 1 cm<sup>2</sup> exposed area measured as 489 μg, very close to that of the zinc loss from the EZ specimen (2 cm<sup>2</sup>) alone. By contrast there is no measurable zinc loss from the IZ portion specimen under these conditions. The increase in zinc loss per unit area from the EZ reflects the additional cathodic area provided by the connected IZ coupon and bimetallic coupling of the metallic coatings.</p>