Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kadhim, Sara

  • Google
  • 1
  • 1
  • 4

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022Flexural performance of RC beams externally strengthened with a single-layer of basalt fiber reinforced polymer sheets4citations

Places of action

Chart of shared publication
Özakça, Mustafa
1 / 4 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Özakça, Mustafa
OrganizationsLocationPeople

article

Flexural performance of RC beams externally strengthened with a single-layer of basalt fiber reinforced polymer sheets

  • Kadhim, Sara
  • Özakça, Mustafa
Abstract

Basalt Fiber Reinforced Polymer (BFRP) is an environment friendly strengthening material that can be used in several engineering applications. In this research, an experimental program was directed to investigate the BFRP strengthening adequacy of reinforced concrete beams. Eight simple-span beams were tested under the four-point bending test and were all made from the same concrete mixture. One layer of BFRP was applied on the soffit of B1, while this layer was wrapped partially along the sides of beams B2, B3, and B4 with vertical side extensions of 25, 75, and 105 mm, respectively, to evaluate the effect of vertical extension of the bottom BFRP layer on the flexural behavior of the strengthened beams. The beams B5 and B6 were strengthened with three BFRP U-strips along the flexural span without and with a bottom layer of BFRP sheet, respectively. On the other hand, the bottom and side surfaces of B7 were fully wrapped with a layer of BFRP, while B0 was kept without strengthening as a reference beam. The test results showed that strengthening with BFRP can noticeably improve the beam load capacity at cracking, yield, and ultimate stages. The ductility of strengthened beams was less than B0 by up to 33% for partial side strengthening and 45% for full side strengthening, while the toughness of all strengthened beams was higher than that of reference beam by 8–78%. The results also showed that increasing the vertical side extension of the bottom BFRP layer leads to significant load capacity increase.

Topics
  • impedance spectroscopy
  • surface
  • polymer
  • laser emission spectroscopy
  • bending flexural test
  • ductility