Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Gupta, Shivani

  • Google
  • 1
  • 3
  • 4

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023On microstructural and mechanical properties of 21-4-N nitronic steel joint developed using microwave energy4citations

Places of action

Chart of shared publication
Bhandari, Shivani
1 / 2 shared
Sharma, Apurbba Kumar
1 / 1 shared
Arora, Navneet
1 / 1 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Bhandari, Shivani
  • Sharma, Apurbba Kumar
  • Arora, Navneet
OrganizationsLocationPeople

article

On microstructural and mechanical properties of 21-4-N nitronic steel joint developed using microwave energy

  • Gupta, Shivani
  • Bhandari, Shivani
  • Sharma, Apurbba Kumar
  • Arora, Navneet
Abstract

<jats:p> In the current experimental work, an effort has been made to explore the feasibility of fusion joints of 21-4-N nitronic steel employing microwave heating. These fusion joints were developed inside a domestic microwave applicator operating at 900 W. Microwave energy was used to fabricate the joints in hybrid heating mode by converting electromagnetic energy into heat at 2.45 GHz. Charcoal and SiC plates were used as susceptor and separator, respectively, and nickel powder was used as the interface material. The developed joints were characterized for their microstructural and mechanical properties. The microstructures indicate a complete fusion of nickel interfacing powder with the faying surfaces. XRD results show the formation of metallic nitrides and carbide phases (Cr<jats:sub>2</jats:sub>N, Fe<jats:sub>3</jats:sub>N, and Fe<jats:sub>2</jats:sub>C) and the FeNi phase at the weld zone. Furthermore, the observed average tensile strength of the fusion joints was approximately 61% of base metal. The reduction in the stress and elongation compared to the base metal were 38.67% and 12.68%, respectively. The average microhardness of the microwave joints was monitored as 407 ± 69.27 HV. The results indicate the feasibility of fusion joints of nitronic steel using microwave energy. </jats:p>

Topics
  • microstructure
  • surface
  • nickel
  • phase
  • x-ray diffraction
  • nitride
  • strength
  • carbide
  • steel
  • tensile strength