People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Constantinides, Georgios
Cyprus University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2023Laser powder bed fusion of 316L stainless steel with 2 wt.% nanosized SiO2 additives: powder processing and consolidationcitations
- 2023Fire endurance and corrosion resistance of nano-modified cement mortars exposed to elevated temperaturescitations
- 2023Effects of process parameters and scan strategy on the microstructure and density of stainless steel 316 L produced via laser powder bed fusioncitations
- 2021Assessing the performance of electrospun nanofabrics as potential interlayer reinforcement materials for fiber-reinforced polymerscitations
- 2020Synthesis and Characterization of Hydrogenated Diamond-Like Carbon (HDLC) Nanocomposite Films with Metal (Ag, Cu) Nanoparticlescitations
- 2018Metal (Ag/Ti)-Containing Hydrogenated Amorphous Carbon Nanocomposite Films with Enhanced Nanoscratch Resistance: Hybrid PECVD/PVD System and Microstructural Characteristicscitations
- 2018Novel combustion synthesis of carbon foam‑aluminum fluoride nanocomposite materialscitations
- 2018Needle grass array of nanostructured nickel cobalt sulfide electrode for clean energy generationcitations
- 2018Nanotribological response of a-C:H coated metallic biomaterials: the cases of stainless steel, titanium, and niobiumcitations
- 2010Does microstructure matter for statistical nanoindentation techniques?citations
Places of action
Organizations | Location | People |
---|
article
Nanotribological response of a-C:H coated metallic biomaterials: the cases of stainless steel, titanium, and niobium
Abstract
<jats:sec><jats:title>Background</jats:title><jats:p> Wear and corrosion have been identified as two of the major forms of medical implant failures. This study aims to improve the surface, protective and tribological characteristics of bare metals used for medical implants, so as to improve scratch resistance and increase lifetime. </jats:p></jats:sec><jats:sec><jats:title>Methods</jats:title><jats:p> Hydrogenated amorphous carbon (a-C:H) films were deposited, using plasma enhanced chemical vapor deposition (PECVD), on stainless steel (SS), titanium (Ti) and niobium (Nb) metal plates. Nanomechanical and nanotribological responses were investigated before and after a-C:H deposition. Film thickness and density were quantified through X-ray reflectivity, and surface morphology before and after deposition were measured using atomic force microscopy, whereas the tribomechanical characteristics were probed using instrumented indentation. </jats:p></jats:sec><jats:sec><jats:title>Results and conclusions</jats:title><jats:p> Films of approximately 40 nm in thickness and density of 1.7 g/cm<jats:sup>3</jats:sup> were deposited. The a-C:H films reduce the roughness and coefficient of friction while improving the tribomechanical response compared with bare metals for Ti, SS and Nb plates. The very good tribomechanical properties of a-C:H make it a promising candidate material for protective coating on metallic implants. </jats:p></jats:sec>