Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Tafintseva, Valeria

  • Google
  • 1
  • 10
  • 14

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2021Infrared fiber-optic spectroscopy detects bovine articular cartilage degeneration14citations

Places of action

Chart of shared publication
Töyräs, Juha
1 / 28 shared
Zimmermann, Boris
1 / 2 shared
Kohler, Achim
1 / 2 shared
Saarakkala, Simo
1 / 5 shared
Virtanen, Vesa
1 / 1 shared
Nippolainen, Ervin
1 / 2 shared
Shaikh, Rubina
1 / 1 shared
Solheim, Johanne
1 / 1 shared
Rieppo, Lassi
1 / 3 shared
Afara, Isaac
1 / 5 shared
Chart of publication period
2021

Co-Authors (by relevance)

  • Töyräs, Juha
  • Zimmermann, Boris
  • Kohler, Achim
  • Saarakkala, Simo
  • Virtanen, Vesa
  • Nippolainen, Ervin
  • Shaikh, Rubina
  • Solheim, Johanne
  • Rieppo, Lassi
  • Afara, Isaac
OrganizationsLocationPeople

article

Infrared fiber-optic spectroscopy detects bovine articular cartilage degeneration

  • Töyräs, Juha
  • Zimmermann, Boris
  • Kohler, Achim
  • Saarakkala, Simo
  • Virtanen, Vesa
  • Nippolainen, Ervin
  • Shaikh, Rubina
  • Solheim, Johanne
  • Tafintseva, Valeria
  • Rieppo, Lassi
  • Afara, Isaac
Abstract

Joint injuries may lead to degeneration of cartilage tissue and initiate development of posttraumatic osteoarthritis. Arthroscopic surgeries can be used to treat joint injuries, but arthroscopic evaluation of articular cartilage quality is subjective. Fourier transform infrared spectroscopy combined with fiber optics and attenuated total reflectance crystal could be used for the assessment of tissue quality during arthroscopy. We hypothesize that fiber-optic mid-infrared spectroscopy can detect enzymatically and mechanically induced damage similar to changes occurring during progression of osteoarthritis.<br /><br />Bovine patellar cartilage plugs were extracted and degraded enzymatically and mechanically. Adjacent untreated samples were utilized as controls. Enzymatic degradation was done using collagenase and trypsin enzymes. Mechanical damage was induced by (1) dropping a weight impactor on the cartilage plugs and (2) abrading the cartilage surface with a rotating sandpaper. Fiber-optic mid-infrared spectroscopic measurements were conducted before and after treatments, and spectral changes were assessed with random forest, partial least squares discriminant analysis, and support vector machine classifiers.<br /><br />All models had excellent classification performance for detecting the different enzymatic and mechanical damage on cartilage matrix. Random forest models achieved accuracies between 90.3% and 77.8%, while partial least squares model accuracies ranged from 95.8% to 84.7%, and support vector machine accuracies from 91.7% to 80.6%.<br /><br />The results suggest that fiber-optic Fourier transform infrared spectroscopy attenuated total reflectance spectroscopy is a viable way to detect minor and major degeneration of articular cartilage. Objective measures provided by fiber-optic spectroscopic methods could improve arthroscopic evaluation of cartilage damage.

Topics
  • impedance spectroscopy
  • surface
  • random
  • Fourier transform infrared spectroscopy