People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Afara, Isaac
University of Eastern Finland
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (5/5 displayed)
- 2023Broadband scattering properties of articular cartilage zones and their relationship with the heterogenous structure of articular cartilage extracellular matrixcitations
- 2021Infrared fiber-optic spectroscopy detects bovine articular cartilage degenerationcitations
- 2019Arthroscopic determination of cartilage proteoglycan content and collagen network structure with near-infrared spectroscopycitations
- 2019Effects of body mass on microstructural features of the osteochondral unit: A comparative analysis of 37 mammalian speciescitations
- 2017Corrigendum to “Multimodality scoring of chondral injuries in the equine fetlock joint ex vivo” [Osteoarthritis Cartilage 25 (5) (2017 May) 790–798] (S1063458416304666), (10.1016/j.joca.2016.12.007))citations
Places of action
Organizations | Location | People |
---|
article
Infrared fiber-optic spectroscopy detects bovine articular cartilage degeneration
Abstract
Joint injuries may lead to degeneration of cartilage tissue and initiate development of posttraumatic osteoarthritis. Arthroscopic surgeries can be used to treat joint injuries, but arthroscopic evaluation of articular cartilage quality is subjective. Fourier transform infrared spectroscopy combined with fiber optics and attenuated total reflectance crystal could be used for the assessment of tissue quality during arthroscopy. We hypothesize that fiber-optic mid-infrared spectroscopy can detect enzymatically and mechanically induced damage similar to changes occurring during progression of osteoarthritis.<br /><br />Bovine patellar cartilage plugs were extracted and degraded enzymatically and mechanically. Adjacent untreated samples were utilized as controls. Enzymatic degradation was done using collagenase and trypsin enzymes. Mechanical damage was induced by (1) dropping a weight impactor on the cartilage plugs and (2) abrading the cartilage surface with a rotating sandpaper. Fiber-optic mid-infrared spectroscopic measurements were conducted before and after treatments, and spectral changes were assessed with random forest, partial least squares discriminant analysis, and support vector machine classifiers.<br /><br />All models had excellent classification performance for detecting the different enzymatic and mechanical damage on cartilage matrix. Random forest models achieved accuracies between 90.3% and 77.8%, while partial least squares model accuracies ranged from 95.8% to 84.7%, and support vector machine accuracies from 91.7% to 80.6%.<br /><br />The results suggest that fiber-optic Fourier transform infrared spectroscopy attenuated total reflectance spectroscopy is a viable way to detect minor and major degeneration of articular cartilage. Objective measures provided by fiber-optic spectroscopic methods could improve arthroscopic evaluation of cartilage damage.