People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Sonne, Mads S.
Technical University of Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (19/19 displayed)
- 2020Thermo-chemical-mechanical simulation of low temperature nitriding of austenitic stainless steel; inverse modelling of surface reaction ratescitations
- 2019A Characterization Study Relating Cross-Sectional Distribution of Fiber Volume Fraction and Permeability
- 2019Numerical Modelling of Heat Transfer using the 3D-ADI-DG Method - with Application for Pultrusion.
- 2019Fiber segmentation from 3D X-ray computed tomography of composites with continuous textured glass fibre yarns
- 2018Multiphysics modelling of manufacturing processes: A reviewcitations
- 2018Numerical Modelling of Mechanical Anisotropy during Low Temperature Nitriding of Stainless Steel
- 2018Uncovering the local inelastic interactions during manufacture of ductile cast iron: How the substructure of the graphite particles can induce residual stress concentrations in the matrixcitations
- 2018Thermomechanical Modelling of Direct-Drive Friction Welding Applying a Thermal Pseudo Mechanical Model for the Generation of Heatcitations
- 2017A FEM based methodology to simulate multiple crack propagation in friction stir weldscitations
- 2017Integrated Computational Modelling of Thermochemical Surface Engineering of Stainless Steel
- 2016Improvement in Surface Characterisitcs of Polymers for Subsequent Electroless Plating Using Liquid Assisted Laser Processingcitations
- 2016Free-form nanostructured tools for plastic injection moulding
- 2016Determination of stamp deformation during imprinting on semi-spherical surfaces
- 2016Multiple Crack Growth Prediction in AA2024-T3 Friction Stir Welded Joints, Including Manufacturing Effectscitations
- 2015Defining Allowable Physical Property Variations for High Accurate Measurements on Polymer Parts.citations
- 2015Modelling residual stresses in friction stir welding of Al alloys - a review of possibilities and future trendscitations
- 2015Comparison of residual stresses in sand- and chill casting of ductile cast iron wind turbine main shaftscitations
- 2015Modelling the residual stresses and microstructural evolution in Friction Stir Welding of AA2024-T3 including the Wagner-Kampmann precipitation model
- 2013The effect of hardening laws and thermal softening on modeling residual stresses in FSW of aluminum alloy 2024-T3citations
Places of action
Organizations | Location | People |
---|
article
Multiphysics modelling of manufacturing processes: A review
Abstract
Numerical modelling is increasingly supporting the analysis and optimization of manufacturing processes in the production industry. Even if being mostly applied to multistep processes, single process steps may be so complex by nature that the needed models to describe them must include multiphysics. On the other hand, processes which inherently may seem multiphysical by nature might sometimes be modelled by considerably simpler models if the problem at hand can be somehow adequately simplified. In the present article, examples of this will be presented. The cases are chosen with the aim of showing the diversity in the field of modelling of manufacturing processes as regards process, materials, generic disciplines as well as length scales: (1) modelling of tape casting for thin ceramic layers, (2) modelling the flow of polymers in extrusion, (3) modelling the deformation process of flexible stamps for nanoimprint lithography, (4) modelling manufacturing of composite parts and (5) modelling the selective laser melting process. For all five examples, the emphasis is on modelling results as well as describing the models in brief mathematical details. Alongside with relevant references to the original work, proper comparison with experiments is given in some examples for model validation.