Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Perveen, Kahkashan

  • Google
  • 1
  • 4
  • 15

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Experimental investigation on mechanical properties of novel polymer hybrid composite with reinforcement of banana fiber and sugarcane bagasse powder15citations

Places of action

Chart of shared publication
Qamar, Mohd Obaid
1 / 1 shared
Razak, Abdul
1 / 6 shared
Deshmukh, Padmakar
1 / 1 shared
Madgule, Mahadev
1 / 1 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Qamar, Mohd Obaid
  • Razak, Abdul
  • Deshmukh, Padmakar
  • Madgule, Mahadev
OrganizationsLocationPeople

article

Experimental investigation on mechanical properties of novel polymer hybrid composite with reinforcement of banana fiber and sugarcane bagasse powder

  • Qamar, Mohd Obaid
  • Perveen, Kahkashan
  • Razak, Abdul
  • Deshmukh, Padmakar
  • Madgule, Mahadev
Abstract

<jats:p> Natural fibers such as Banana fiber and sugarcane bagasse powder are used in the present study, which are abundantly available at low cost. Novel hybrid natural fiber reinforced composite specimen prepared by using the matrix material as epoxy (70%) with the addition of hardener and the reinforcement material (30%) used as NaOH chemical treated banana fiber with the addition of filler material as sugarcane bagasse powder to enhance the property. To prepare the composite material hand-lay process is used and manufactured three different combination of specimen by varying the composition ration of 10%, 15%, and 20% of reinforced material. The mechanical properties such as tensile, compression, flexural, Impact test of the prepared specimen have been evaluated as per the ASTM standards. The mechanical properties results depicts that the specimen prepared with chemically treated fiber gives more strength as compared to untreated fiber composites. The morphological study evidences the proper fiber used while preparing the hybrid composite material. The maximum tensile strength achieved in specimen is 73.48 MPa, compressive strength of 99.63 MPa, flexural strength of 77.50 MPa, Impact strength of 4.8 J/mm, Vickers hardness value of 59.6. The specimen prepared with chemically treated specimen has a higher percentage of water absorption than the untreated. This novel hybrid composite material can be used in automobile, aircraft, building, sports, and household applications. </jats:p>

Topics
  • impedance spectroscopy
  • polymer
  • strength
  • composite
  • flexural strength
  • hardness
  • impact test
  • tensile strength