Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Jothibasu, S.

  • Google
  • 1
  • 4
  • 179

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2020Investigation on the mechanical behavior of areca sheath fibers/jute fibers/glass fabrics reinforced hybrid composite for light weight applications179citations

Places of action

Chart of shared publication
Vijay, R.
1 / 9 shared
Vinod, A.
1 / 1 shared
Singaravelu, D. Lenin
1 / 1 shared
Mohanamurugan, S.
1 / 1 shared
Chart of publication period
2020

Co-Authors (by relevance)

  • Vijay, R.
  • Vinod, A.
  • Singaravelu, D. Lenin
  • Mohanamurugan, S.
OrganizationsLocationPeople

article

Investigation on the mechanical behavior of areca sheath fibers/jute fibers/glass fabrics reinforced hybrid composite for light weight applications

  • Vijay, R.
  • Vinod, A.
  • Singaravelu, D. Lenin
  • Mohanamurugan, S.
  • Jothibasu, S.
Abstract

<jats:p> Hybrid polymeric composites are gaining important consideration with versatile applications due to their good mechanical properties. The present study is an attempt to evaluate the hybridization effects of different laminate stacking sequence involving areca sheath fiber/jute fiber/glass-woven fabric through the study of mechanical properties of four different resulting composites. The fibers were alkali-treated and were used in composites fabrication that was done using the hand lay-up method. This assessment of mechanical properties and study of fractured surfaces indicated a significant improvement in mechanical properties of the composites with jute fiber as intermittent layers, areca sheath fiber as a core layer, and glass fabrics as skin layer reinforced epoxy composites. An attempt to prove the application suitability of “L” frame for flower stand application was fabricated using the best mechanical behavior performer composite, and the ANSYS (deformation) analysis was also performed. </jats:p>

Topics
  • impedance spectroscopy
  • surface
  • glass
  • glass
  • composite
  • woven