People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Zarouchas, Dimitrios
Delft University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (30/30 displayed)
- 2024Innovative welding integration of acousto-ultrasonic composite transducers onto thermoplastic composite structurescitations
- 2023Intelligent Health Indicators Based on Semi-supervised Learning Utilizing Acoustic Emission Datacitations
- 2023Non-destructive strength prediction of composite laminates utilizing deep learning and the stochastic finite element methodscitations
- 2023Acousto-ultrasonic composite transducers integration into thermoplastic composite structures via ultrasonic welding
- 2023Hierarchical Upscaling of Data-Driven Damage Diagnostics for Stiffened Composite Aircraft Structures
- 2023Intelligent health indicator construction for prognostics of composite structures utilizing a semi-supervised deep neural network and SHM datacitations
- 2023An SHM Data-Driven Methodology for the Remaining Useful Life Prognosis of Aeronautical Subcomponentscitations
- 2023A novel strain-based health indicator for the remaining useful life estimation of degrading composite structurescitations
- 2023Developing health indicators for composite structures based on a two-stage semi-supervised machine learning model using acoustic emission datacitations
- 2023Analysis of Stochastic Matrix Crack Evolution in CFRP Cross-Ply Laminates under Fatigue Loadingcitations
- 2023Delamination Size Prediction for Compressive Fatigue Loaded Composite Structures Via Ultrasonic Guided Wave Based Structural Health Monitoring
- 2022On the Challenges of Upscaling Damage Monitoring Methodologies for Stiffened Composite Aircraft Panelscitations
- 2022Synthesis and characterization of novel eco-epoxy adhesives based on the modified tannic acid for self-healing jointscitations
- 2022Synthesis and characterization of novel eco-epoxy adhesives based on the modified tannic acid for self-healing jointscitations
- 2022Assessing stiffness degradation of stiffened composite panels in post-buckling compression-compression fatigue using guided wavescitations
- 2022Early fatigue damage accumulation of CFRP Cross-Ply laminates considering size and stress level effectscitations
- 2021A Strain-Based Health Indicator for the SHM of Skin-to-Stringer Disbond Growth of Composite Stiffened Panels in Fatiguecitations
- 2021Health monitoring of aerospace structures utilizing novel health indicators extracted from complex strain and acoustic emission datacitations
- 2021A review of experimental and theoretical fracture characterization of bi-material bonded jointscitations
- 2021Fusion-based damage diagnostics for stiffened composite panelscitations
- 2021Health indicators for diagnostics and prognostics of composite aerospace structurescitations
- 2021Damage assessment of a titanium skin adhesively bonded to carbon fiber–reinforced plastic omega stringers using acoustic emissioncitations
- 2020Damage assessment of NCF, 2D and 3D Woven Composites under Compression After Multiple-Impact using Acoustic Emissioncitations
- 2020The effect of temperature on fatigue strength of poly(ether-imide)/multiwalled carbon nanotube/carbon fibers composites for aeronautical applicationcitations
- 2019Compression After Multiple Low Velocity Impacts of NCF, 2D and 3D Woven Compositescitations
- 2019Physics of delamination onset in unidirectional composite laminates under mixed-mode I/II loadingcitations
- 2019Damage characterization of adhesively-bonded Bi-material joints using acoustic emissioncitations
- 2010Numerical failure analysis of composite structures
- 2009Study of the mechanical response of carbon Reinforced concrete beams using Non Destructive Techniques during a four-point bending test
- 2009Study of the crack propagation in carbon reinforced concrete beams during a four-point bending test
Places of action
Organizations | Location | People |
---|
article
Fusion-based damage diagnostics for stiffened composite panels
Abstract
Conducting damage diagnostics on stiffened panels is commonly performed using a single SHM technique. However, each SHM technique has both its strengths and limitations. Rather than straining the expansion of single SHM techniques going beyond their intrinsic capacities, these strengths and limitations should instead be considered in their application. In this work, we propose a novel fusion-based methodology between data from two SHM techniques in order to surpass the capabilities of a single SHM technique. The aim is to show that by considering data fusion, a synergy can be obtained, resulting in a comprehensive damage assessment, not possible using a single SHM technique. For this purpose, three single-stiffener carbon–epoxy panels were subjected to fatigue compression after impact tests. Two SHM techniques monitored damage growth under the applied fatigue loads: acoustic emission and distributed fiber optic strain sensing. Four acoustic emission sensors were placed on each panel, thereby allowing for damage detection, localization, type identification (delamination), and severity assessment. The optical fibers were adhered to the stiffener feet’ surface, and its strain measurements were used for damage detection, disbond localization, damage type identification (stiffness degradation and disbond growth), and severity assessment. Different fusion techniques are presented in order to integrate the acoustic emission and strain data. For damage detection and severity assessment, a hybrid health indicator is obtained by feature-level fusion while a complementary and cooperative fusion of the diagnostic results is developed for damage localization and type identification. We show that damage growth can be monitored up until final failure, thereby performing a simultaneous damage assessment on all four SHM levels. In this manner, we demonstrate that by proposing a fusion-based approach toward SHM of composite structures, the intrinsic capacity of each SHM technique can be utilized, leading to synergistic effects for damage diagnostics.