Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Alagoz, Elif

  • Google
  • 1
  • 1
  • 2

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024Glass flakes for enhancing mechanical properties of glass/epoxy composites2citations

Places of action

Chart of shared publication
Selver, Erdem
1 / 20 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Selver, Erdem
OrganizationsLocationPeople

article

Glass flakes for enhancing mechanical properties of glass/epoxy composites

  • Selver, Erdem
  • Alagoz, Elif
Abstract

The purpose of this study is to improve composite mechanical properties by reducing the degradation induced by seawater in glass fibre/epoxy composites. To do this, glass flakes (50 µm in size) were placed on the surfaces of the glass fibre/epoxy composite material using various ratios (5%–15%). Glass flakes were introduced into composite materials that were exposed to seawater for a period ranging from 0 to 12 months, and changes in bending, tensile, impact, compression, and compression after impact strengths were assessed. Flexural tests revealed that the gel coat and glass flakes increased their loads by up to 24% and 23% after 6 and 12 months of water immersion, respectively. Tensile tests indicated that lower tensile strength loss occurred as the glass flake ratio rose. As the immersion duration increased, the effect of glass flakes became more evident in terms of tensile strength. Composites containing glass flakes showed greater impact strength load values in both 20 and 30 J impacts compared to the control sample. The use of glass flakes improved the residual strength values because it prevented water penetration. The control sample retained up to 50% of its compressive strength, while the 15% glass-flake reinforcement promoted retention to 56%.

Topics
  • impedance spectroscopy
  • surface
  • glass
  • glass
  • strength
  • composite
  • bending flexural test
  • tensile strength