People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Mohanty, Smita
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2024Nylon 12 composite optimization: Investigating influence of ceramic functional fillers on FFF 3D printing performance and rheological propertiescitations
- 2023Fabrication of Material Extrusion‐Based Carbon Nanotubes/Zinc Oxide Core–Shell Polylactic Acid Nanocomposite Filaments for Advanced Biomedical Applicationscitations
- 2023Experimental and simulation studies of hybrid <scp>MWCNT</scp>/montmorillonite reinforced <scp>FDM</scp> based <scp>PLA</scp> filaments with multifunctional properties enhancementcitations
- 2023Mechanical performance of e-glass reinforced polyester resins (isophthalic and orthophthalic) laminate composites used in marine applicationscitations
- 2023Fabrication and characterization of light weight PVC foam based E-glass reinforced polyester sandwich compositescitations
- 2023Experimental investigation on mechanical performance of <scp>PVC</scp> foam‐based E‐glass isophthalic polyester compositescitations
- 2023Static and dynamic mechanical analyses of E-glass–polyester composite used in mass transit systemcitations
- 2019Polymer Nanocomposites Coating for Anticorrosion Application
- 2014A Novel Method of Mechanical Oxidation of CNT for Polymer Nanocomposite Application: Evaluation of Mechanical, Dynamic Mechanical, and Rheological Propertiescitations
Places of action
Organizations | Location | People |
---|
article
Mechanical performance of e-glass reinforced polyester resins (isophthalic and orthophthalic) laminate composites used in marine applications
Abstract
<jats:p> This study examined the mechanical performance of two polyester resins (isophthalic and orthophthalic) used to create e-glass-based laminate composites for the marine industry. The current study performed a static analysis of laminate composites using compressive, impact and hardness tests. Single edge-notched beam (SENB) fracture tests under mode I (i.e. opening mode) were performed on e-glass reinforced orthophthalic polyester laminate composites (S1) and e-glass reinforced isophthalic polyester laminate composites (S2) at cryogenic temperature (−10°C), ambient temperature (25°C) and high temperature (100°C). The interaction between fibres and matrix material was studied using Fourier transform infrared (FTIR) spectroscopy. A scanning electron microscope (SEM) was used to examine the substructure of fractured surface. A water absorption test was also performed on the fabricated samples. FTIR study revealed NH stretching, CH bend, CN stretching, C-O-C and CH-stretching. e-Glass isophthalic polyester composites had higher compressive strength, impact strength, hardness, fracture toughness and fracture energy than orthophthalic polyester laminate composites. The decrease in temperature increased the fracture properties. In both types of laminate composites, as the temperature increased, the fracture toughness and fracture energy decreased. The diffusion and permeability coefficients of isophthalic composites were greater than those of orthophthalic-based composites. The crushed fibre, fibre pull-out, riverline, matrix-fibre delamination and debonding are all evident in the fractured surface SEM micrograph. </jats:p>