Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Bisaria, Himanshu

  • Google
  • 4
  • 3
  • 42

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2023Mechanical performance of e-glass reinforced polyester resins (isophthalic and orthophthalic) laminate composites used in marine applications11citations
  • 2023Fabrication and characterization of light weight PVC foam based E-glass reinforced polyester sandwich composites12citations
  • 2023Experimental investigation on mechanical performance of <scp>PVC</scp> foam‐based E‐glass isophthalic polyester composites6citations
  • 2023Static and dynamic mechanical analyses of E-glass–polyester composite used in mass transit system13citations

Places of action

Chart of shared publication
Mohanty, Smita
4 / 9 shared
Ojha, Somanath
4 / 4 shared
Kanny, Krishnan
4 / 10 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Mohanty, Smita
  • Ojha, Somanath
  • Kanny, Krishnan
OrganizationsLocationPeople

article

Mechanical performance of e-glass reinforced polyester resins (isophthalic and orthophthalic) laminate composites used in marine applications

  • Mohanty, Smita
  • Ojha, Somanath
  • Bisaria, Himanshu
  • Kanny, Krishnan
Abstract

<jats:p> This study examined the mechanical performance of two polyester resins (isophthalic and orthophthalic) used to create e-glass-based laminate composites for the marine industry. The current study performed a static analysis of laminate composites using compressive, impact and hardness tests. Single edge-notched beam (SENB) fracture tests under mode I (i.e. opening mode) were performed on e-glass reinforced orthophthalic polyester laminate composites (S1) and e-glass reinforced isophthalic polyester laminate composites (S2) at cryogenic temperature (−10°C), ambient temperature (25°C) and high temperature (100°C). The interaction between fibres and matrix material was studied using Fourier transform infrared (FTIR) spectroscopy. A scanning electron microscope (SEM) was used to examine the substructure of fractured surface. A water absorption test was also performed on the fabricated samples. FTIR study revealed NH stretching, CH bend, CN stretching, C-O-C and CH-stretching. e-Glass isophthalic polyester composites had higher compressive strength, impact strength, hardness, fracture toughness and fracture energy than orthophthalic polyester laminate composites. The decrease in temperature increased the fracture properties. In both types of laminate composites, as the temperature increased, the fracture toughness and fracture energy decreased. The diffusion and permeability coefficients of isophthalic composites were greater than those of orthophthalic-based composites. The crushed fibre, fibre pull-out, riverline, matrix-fibre delamination and debonding are all evident in the fractured surface SEM micrograph. </jats:p>

Topics
  • surface
  • scanning electron microscopy
  • glass
  • glass
  • strength
  • composite
  • hardness
  • permeability
  • resin
  • fracture toughness
  • spectroscopy