People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Selver, Erdem
University of Portsmouth
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (20/20 displayed)
- 2024Glass flakes for enhancing mechanical properties of glass/epoxy compositescitations
- 2024Self-healing potential of stitched glass/polypropylene/epoxy hybrid composites with various fiberscitations
- 2023Enhancing the mechanical performance of notched glass/epoxy composite laminates via hybridisation with thermoplastic fibrescitations
- 2022Glass/polypropylene hybrid knitted fabrics for toughening of thermoset compositescitations
- 2022Investigation of the impact and post-impact behaviour of glass and glass/natural fibre hybrid composites made with various stacking sequences: experimental and theoretical analysiscitations
- 2022Influence of yarn hybridisation and fibre architecture on the compaction response of woven fabric preforms during composite manufacturingcitations
- 2022Improving the fracture toughness of glass/epoxy laminates through intra-yarns hybridisationcitations
- 2022Influence of yarn-hybridisation on the mechanical performance and thermal conductivity of composite laminatescitations
- 2021The role of hybridisation and fibre architecture on the post-impact flexural behaviour of composite laminatescitations
- 2021Intra-tow micro-wrapping for damage tolerancecitations
- 2021Experimental and theoretical study of sandwich composites with Z-pins under quasi-static compression loadingcitations
- 2021Mechanical and thermal properties of glass/epoxy composites filled with silica aerogelscitations
- 2020Tensile and flexural properties of glass and carbon fibre composites reinforced with silica nanoparticles and polyethylene glycolcitations
- 2019Acoustic properties of hybrid glass/flax and glass/jute composites consisting of different stacking sequencescitations
- 2019Impact resistance of Z-pin-reinforced sandwich compositescitations
- 2019Impact and damage tolerance of shear thickening fluids-impregnated carbon and glass fabric compositescitations
- 2019Flexural properties of sandwich composite laminates reinforced with glass and carbon Z-pinscitations
- 2018Effect of stacking sequence on tensile, flexural and thermomechanical properties of hybrid flax/glass and jute/glass thermoset compositescitations
- 2016Impact damage tolerance of thermoset composites reinforced with hybrid commingled yarnscitations
- 2013Nanoclay/Polypropylene composite monofilament processing and properties using twin and single screw extruderscitations
Places of action
Organizations | Location | People |
---|
article
Improving the fracture toughness of glass/epoxy laminates through intra-yarns hybridisation
Abstract
Glass fibre reinforced composite laminates have shown poor interlaminar fracture toughness which makes them vulnerable to impact damages; hence, it is essential to improve their fracture toughness and understand the mechanisms of impact energy dissipation. In this study, polypropylene (PP) fibres are mixed with glass fibres at yarn-level hybridisation to enhance the interlaminar fracture toughness of glass/epoxy composite laminates. Composite laminates containing S-glass and hybrid yarns (S-glass and PP) have been manufactured with non-crimp cross-ply preforms using vacuum bagging process. The fracture resistance of laminates with S-glass fibres and hybrid yarns laminates have been evaluated using double cantilever beam (DCB) and end notch flexural (ENF) tests. In addition, the fracture surface analysis was conducted using Scanning Electronic Microscope (SEM). It has been noticed that the yarn-level hybridisation considerably enhanced the mode-I (DCB) and mode-II (ENF) fracture toughness of hybrid laminates compared to that of baseline samples. SEM micrographs of fracture surface illustrated that PP fibre/epoxy de-bonding followed by pull-out of fibre and bridging of fibre has been the effective mechanisms of toughening the hybrid laminates resulting into higher fracture resistance. The results demonstrated that the hybridisation of glass fibres with polypropylene fibres could potentially improve the delamination resistance with the improvement of impact damage tolerance of glass/epoxy laminates.