People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Reis, Ana
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (15/15 displayed)
- 2023Low- and High-Pressure Casting Aluminum Alloys: A Reviewcitations
- 2023Upcycling Aluminium Chips to Powder Feedstocks for Powder Metallurgy Applicationscitations
- 2023Additively Manufactured High-Strength Aluminum Alloys: A Reviewcitations
- 2022Damage Evolution Simulations via a Coupled Crystal Plasticity and Cohesive Zone Model for Additively Manufactured Austenitic SS 316L DED Componentscitations
- 2022Tensile Properties of As-Built 18Ni300 Maraging Steel Produced by DEDcitations
- 2022Numerical predictions of orthogonal cutting–induced residual stress of super alloy Inconel 718 considering dynamic recrystallizationcitations
- 2022An Adaptive Thermal Finite Element Simulation of Direct Energy Deposition With Reinforcement Learning: A Conceptual Frameworkcitations
- 2021Fracture Prediction Based on Evaluation of Initial Porosity Induced By Direct Energy Depositioncitations
- 2021Comparison of the machinability of the 316L and 18Ni300 additively manufactured steels based on turning testscitations
- 2021Numerical-experimental plastic-damage characterisation of additively manufactured 18ni300 maraging steel by means of multiaxial double-notched specimenscitations
- 2021Optimization of Direct Laser Deposition of a Martensitic Steel Powder (Metco 42C) on 42CrMo4 Steelcitations
- 2021An innovation in finite element simulation via crystal plasticity assessment of grain morphology effect on sheet metal formabilitycitations
- 2021Inconel 625/AISI 413 Stainless Steel Functionally Graded Material Produced by Direct Laser Depositioncitations
- 2021Deposition of Nickel-Based Superalloy Claddings on Low Alloy Structural Steel by Direct Laser Depositioncitations
- 2018Characterizing fracture forming limit and shear fracture forming limit for sheet metalscitations
Places of action
Organizations | Location | People |
---|
article
An innovation in finite element simulation via crystal plasticity assessment of grain morphology effect on sheet metal formability
Abstract
<jats:p> Experimental and numerical study regarding the uniaxial tensile test and the forming limit diagram are addressed in this paper for AL2024 with the face-centered cube structure. First, representation of a grain structure can be obtained directly by mapping metallographic observations via scanning electron microscopy approach. Artificial grain microstructures produced by Voronoi Tessellation method are employed in the model using VGRAIN software. By resorting to the finite element software (ABAQUS) capabilities, the constitutive equations of the crystal plasticity were utilized and implemented as a user subroutine material UMAT code. The hardening parameters were calibrated by a trial and error approach in order to fit experimental tensile results with the simulation. Then the effect of the changing grain size, the heterogeneity factor, and the grain aspect ratio were studied for a uniaxial tensile test to emphasize the importance of the microstudy behavior of grains in material behavior. Furthermore, the polycrystal plasticity grain distribution was employed in the Nakazima test in order to obtain the forming limit diagram. The crystal plasticity-driven forming limit diagram reveals more accurate strains, taking into account the involving the micromechanical features of the grains. An innovative approach is pursued in this study to discover the necking angle, both in tensile test or Nakazima samples, showing a good agreement with the experiment results. </jats:p>