People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Alves, Jl
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (19/19 displayed)
- 2024Artificial reefs through additive manufacturing: a review of their design, purposes and fabrication process for marine restoration and managementcitations
- 2023Potential Use of Sugarcane Bagasse Ash in Cementitious Mortars for 3D Printingcitations
- 2023Analysis of Lattices Based on TPMS for Bone Scaffold
- 20224D structures for the short-time building of emergency shelterscitations
- 2022Design and validation of an innovative 3D printer containing a co-rotating twin screw extrusion unitcitations
- 2022A bio-inspired remodelling algorithm combined with a natural neighbour meshless method to obtain optimized functionally graded materialscitations
- 2021Development of 3D printing sustainable mortars based on a bibliometric analysiscitations
- 2021The influence of infill density gradient on the mechanical properties of PLA optimized structures by additive manufacturingcitations
- 2021Effect of 3D printer enabled surface morphology and composition on coral growth in artificial reefscitations
- 2021Using a radial point interpolation meshless method and the finite element method for application of a bio-inspired remodelling algorithm in the design of optimized bone scaffoldcitations
- 2020Influence of multiple scan fields on the processing of 316L stainless steel using laser powder bed fusioncitations
- 2020Machinability of PA12 and short fibre-reinforced PA12 materials produced by fused filament fabricationcitations
- 2019Study of the influence of sintering temperature on water absorption in the manufacture of porcelain cupscitations
- 2017Effect of the chemical milling process on the surface of titanium aluminide castings
- 2017Study of the viability of manufacturing ceramic moulds by additive manufacturing for rapid castingcitations
- 2017Experimental characterization of ceramic shells for investment casting of reactive alloyscitations
- 2017Reinforcement of a biopolymer matrix by lignocellulosic agro-wastecitations
- 2017The influence of face coat material on reactivity and fluidity of the Ti6Al4V and TiAl alloys during investment castingcitations
- 2015DEVELOPMENT OF A PROJECT AND MANUFACTURE METHODOLOGY FOR TITANIUM ALLOYS JOINT PROSTHESES
Places of action
Organizations | Location | People |
---|
article
The influence of infill density gradient on the mechanical properties of PLA optimized structures by additive manufacturing
Abstract
The aim of this work is the development of a novel framework for structural optimization using bio-inspired remodelling algorithm adapted to additive manufacturing. The fact that polylactic acid (PLA, E = 3145 MPa (Young's modulus) according to the supplier for parts obtained by injection) shows a similar parameterized behavior with ductile metals, in the sense that both materials are characterized by a bi-linear elastic-plastic law, allows to simulate and prototype parts to be further constructed in ductile metals at a lower cost and then be produced with more expensive fabrication processes. Moreover, cellular materials allow for a significant weight reduction and therefore reduction of production costs. Structural optimization algorithms based on biological phenomena were used to determine the density distribution of the infill density of the specimens. Several simple structures were submitted to distinct complex load cases and analyzed using the mentioned optimization algorithms combined with the finite element method and a meshless method. The surface was divided according to similar density and then converted to stereolitography files and infilled with the gyroid structure at the desired density determined before, using open-source slicing software. Smoothing functions were used to smooth the density field obtained with the remodeling algorithms. The samples were printed with fused filament fabrication technology and submitted to mechanical flexural tests similar to the ones analyzed analytically, namely three- and four-point bending tests. Thus, the factors of analysis were the smoothing parameter and the remodeling method, and the responses evaluated were stiffness, specific stiffness, maximum force, and mass. The experimental results correlated (obtaining accuracy of 35% for the three-point bending load case and 5% for the four-point bending load case) to the numerical results in terms of flexural stiffness and it was found that the complexity of the load case is relevant for the efficiency of the functional gradient. The fused filament fabrication process is still not accurate enough to be able to experimentally compare the results based of finite element method and meshless method analyses.